This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of Schloeder p. 2. (Contributed by NM, 21-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsucss | |- ( Ord B -> ( A e. B -> suc A C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord | |- ( ( Ord B /\ A e. B ) -> Ord A ) |
|
| 2 | ordnbtwn | |- ( Ord A -> -. ( A e. B /\ B e. suc A ) ) |
|
| 3 | imnan | |- ( ( A e. B -> -. B e. suc A ) <-> -. ( A e. B /\ B e. suc A ) ) |
|
| 4 | 2 3 | sylibr | |- ( Ord A -> ( A e. B -> -. B e. suc A ) ) |
| 5 | 4 | adantr | |- ( ( Ord A /\ Ord B ) -> ( A e. B -> -. B e. suc A ) ) |
| 6 | ordsuc | |- ( Ord A <-> Ord suc A ) |
|
| 7 | ordtri1 | |- ( ( Ord suc A /\ Ord B ) -> ( suc A C_ B <-> -. B e. suc A ) ) |
|
| 8 | 6 7 | sylanb | |- ( ( Ord A /\ Ord B ) -> ( suc A C_ B <-> -. B e. suc A ) ) |
| 9 | 5 8 | sylibrd | |- ( ( Ord A /\ Ord B ) -> ( A e. B -> suc A C_ B ) ) |
| 10 | 1 9 | sylan | |- ( ( ( Ord B /\ A e. B ) /\ Ord B ) -> ( A e. B -> suc A C_ B ) ) |
| 11 | 10 | exp31 | |- ( Ord B -> ( A e. B -> ( Ord B -> ( A e. B -> suc A C_ B ) ) ) ) |
| 12 | 11 | pm2.43b | |- ( A e. B -> ( Ord B -> ( A e. B -> suc A C_ B ) ) ) |
| 13 | 12 | pm2.43b | |- ( Ord B -> ( A e. B -> suc A C_ B ) ) |