This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omwordi | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omword | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B <-> ( C .o A ) C_ ( C .o B ) ) ) |
|
| 2 | 1 | biimpd | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) |
| 3 | 2 | ex | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) ) |
| 4 | eloni | |- ( C e. On -> Ord C ) |
|
| 5 | ord0eln0 | |- ( Ord C -> ( (/) e. C <-> C =/= (/) ) ) |
|
| 6 | 5 | necon2bbid | |- ( Ord C -> ( C = (/) <-> -. (/) e. C ) ) |
| 7 | 4 6 | syl | |- ( C e. On -> ( C = (/) <-> -. (/) e. C ) ) |
| 8 | 7 | 3ad2ant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C = (/) <-> -. (/) e. C ) ) |
| 9 | ssid | |- (/) C_ (/) |
|
| 10 | om0r | |- ( A e. On -> ( (/) .o A ) = (/) ) |
|
| 11 | 10 | adantr | |- ( ( A e. On /\ B e. On ) -> ( (/) .o A ) = (/) ) |
| 12 | om0r | |- ( B e. On -> ( (/) .o B ) = (/) ) |
|
| 13 | 12 | adantl | |- ( ( A e. On /\ B e. On ) -> ( (/) .o B ) = (/) ) |
| 14 | 11 13 | sseq12d | |- ( ( A e. On /\ B e. On ) -> ( ( (/) .o A ) C_ ( (/) .o B ) <-> (/) C_ (/) ) ) |
| 15 | 9 14 | mpbiri | |- ( ( A e. On /\ B e. On ) -> ( (/) .o A ) C_ ( (/) .o B ) ) |
| 16 | oveq1 | |- ( C = (/) -> ( C .o A ) = ( (/) .o A ) ) |
|
| 17 | oveq1 | |- ( C = (/) -> ( C .o B ) = ( (/) .o B ) ) |
|
| 18 | 16 17 | sseq12d | |- ( C = (/) -> ( ( C .o A ) C_ ( C .o B ) <-> ( (/) .o A ) C_ ( (/) .o B ) ) ) |
| 19 | 15 18 | syl5ibrcom | |- ( ( A e. On /\ B e. On ) -> ( C = (/) -> ( C .o A ) C_ ( C .o B ) ) ) |
| 20 | 19 | 3adant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C = (/) -> ( C .o A ) C_ ( C .o B ) ) ) |
| 21 | 8 20 | sylbird | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. (/) e. C -> ( C .o A ) C_ ( C .o B ) ) ) |
| 22 | 21 | a1dd | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. (/) e. C -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) ) |
| 23 | 3 22 | pm2.61d | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) |