This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opeq1 | |- ( A = B -> <. A , C >. = <. B , C >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( A = B -> ( A e. _V <-> B e. _V ) ) |
|
| 2 | 1 | anbi1d | |- ( A = B -> ( ( A e. _V /\ C e. _V ) <-> ( B e. _V /\ C e. _V ) ) ) |
| 3 | sneq | |- ( A = B -> { A } = { B } ) |
|
| 4 | preq1 | |- ( A = B -> { A , C } = { B , C } ) |
|
| 5 | 3 4 | preq12d | |- ( A = B -> { { A } , { A , C } } = { { B } , { B , C } } ) |
| 6 | 2 5 | ifbieq1d | |- ( A = B -> if ( ( A e. _V /\ C e. _V ) , { { A } , { A , C } } , (/) ) = if ( ( B e. _V /\ C e. _V ) , { { B } , { B , C } } , (/) ) ) |
| 7 | dfopif | |- <. A , C >. = if ( ( A e. _V /\ C e. _V ) , { { A } , { A , C } } , (/) ) |
|
| 8 | dfopif | |- <. B , C >. = if ( ( B e. _V /\ C e. _V ) , { { B } , { B , C } } , (/) ) |
|
| 9 | 6 7 8 | 3eqtr4g | |- ( A = B -> <. A , C >. = <. B , C >. ) |