This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of ordinal multiplication. (Contributed by NM, 25-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omord2 | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A e. B <-> ( C .o A ) e. ( C .o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omordi | |- ( ( ( B e. On /\ C e. On ) /\ (/) e. C ) -> ( A e. B -> ( C .o A ) e. ( C .o B ) ) ) |
|
| 2 | 1 | 3adantl1 | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A e. B -> ( C .o A ) e. ( C .o B ) ) ) |
| 3 | oveq2 | |- ( A = B -> ( C .o A ) = ( C .o B ) ) |
|
| 4 | 3 | a1i | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A = B -> ( C .o A ) = ( C .o B ) ) ) |
| 5 | omordi | |- ( ( ( A e. On /\ C e. On ) /\ (/) e. C ) -> ( B e. A -> ( C .o B ) e. ( C .o A ) ) ) |
|
| 6 | 5 | 3adantl2 | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( B e. A -> ( C .o B ) e. ( C .o A ) ) ) |
| 7 | 4 6 | orim12d | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( A = B \/ B e. A ) -> ( ( C .o A ) = ( C .o B ) \/ ( C .o B ) e. ( C .o A ) ) ) ) |
| 8 | 7 | con3d | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( -. ( ( C .o A ) = ( C .o B ) \/ ( C .o B ) e. ( C .o A ) ) -> -. ( A = B \/ B e. A ) ) ) |
| 9 | omcl | |- ( ( C e. On /\ A e. On ) -> ( C .o A ) e. On ) |
|
| 10 | omcl | |- ( ( C e. On /\ B e. On ) -> ( C .o B ) e. On ) |
|
| 11 | eloni | |- ( ( C .o A ) e. On -> Ord ( C .o A ) ) |
|
| 12 | eloni | |- ( ( C .o B ) e. On -> Ord ( C .o B ) ) |
|
| 13 | ordtri2 | |- ( ( Ord ( C .o A ) /\ Ord ( C .o B ) ) -> ( ( C .o A ) e. ( C .o B ) <-> -. ( ( C .o A ) = ( C .o B ) \/ ( C .o B ) e. ( C .o A ) ) ) ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( ( C .o A ) e. On /\ ( C .o B ) e. On ) -> ( ( C .o A ) e. ( C .o B ) <-> -. ( ( C .o A ) = ( C .o B ) \/ ( C .o B ) e. ( C .o A ) ) ) ) |
| 15 | 9 10 14 | syl2an | |- ( ( ( C e. On /\ A e. On ) /\ ( C e. On /\ B e. On ) ) -> ( ( C .o A ) e. ( C .o B ) <-> -. ( ( C .o A ) = ( C .o B ) \/ ( C .o B ) e. ( C .o A ) ) ) ) |
| 16 | 15 | anandis | |- ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C .o A ) e. ( C .o B ) <-> -. ( ( C .o A ) = ( C .o B ) \/ ( C .o B ) e. ( C .o A ) ) ) ) |
| 17 | 16 | ancoms | |- ( ( ( A e. On /\ B e. On ) /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) <-> -. ( ( C .o A ) = ( C .o B ) \/ ( C .o B ) e. ( C .o A ) ) ) ) |
| 18 | 17 | 3impa | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) <-> -. ( ( C .o A ) = ( C .o B ) \/ ( C .o B ) e. ( C .o A ) ) ) ) |
| 19 | 18 | adantr | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( C .o A ) e. ( C .o B ) <-> -. ( ( C .o A ) = ( C .o B ) \/ ( C .o B ) e. ( C .o A ) ) ) ) |
| 20 | eloni | |- ( A e. On -> Ord A ) |
|
| 21 | eloni | |- ( B e. On -> Ord B ) |
|
| 22 | ordtri2 | |- ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
|
| 23 | 20 21 22 | syl2an | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| 24 | 23 | 3adant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| 25 | 24 | adantr | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| 26 | 8 19 25 | 3imtr4d | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( C .o A ) e. ( C .o B ) -> A e. B ) ) |
| 27 | 2 26 | impbid | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A e. B <-> ( C .o A ) e. ( C .o B ) ) ) |