This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition with 1 is same as successor. Proposition 4.34(a) of Mendelson p. 266. Remark 2.4 of Schloeder p. 4. (Contributed by NM, 29-Oct-1995) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oa1suc | |- ( A e. On -> ( A +o 1o ) = suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o | |- 1o = suc (/) |
|
| 2 | 1 | oveq2i | |- ( A +o 1o ) = ( A +o suc (/) ) |
| 3 | peano1 | |- (/) e. _om |
|
| 4 | onasuc | |- ( ( A e. On /\ (/) e. _om ) -> ( A +o suc (/) ) = suc ( A +o (/) ) ) |
|
| 5 | 3 4 | mpan2 | |- ( A e. On -> ( A +o suc (/) ) = suc ( A +o (/) ) ) |
| 6 | 2 5 | eqtrid | |- ( A e. On -> ( A +o 1o ) = suc ( A +o (/) ) ) |
| 7 | oa0 | |- ( A e. On -> ( A +o (/) ) = A ) |
|
| 8 | suceq | |- ( ( A +o (/) ) = A -> suc ( A +o (/) ) = suc A ) |
|
| 9 | 7 8 | syl | |- ( A e. On -> suc ( A +o (/) ) = suc A ) |
| 10 | 6 9 | eqtrd | |- ( A e. On -> ( A +o 1o ) = suc A ) |