This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmlno0.3 | |- N = ( U normOpOLD W ) |
|
| nmlno0.0 | |- Z = ( U 0op W ) |
||
| nmlno0.7 | |- L = ( U LnOp W ) |
||
| nmlno0i.u | |- U e. NrmCVec |
||
| nmlno0i.w | |- W e. NrmCVec |
||
| Assertion | nmlno0i | |- ( T e. L -> ( ( N ` T ) = 0 <-> T = Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlno0.3 | |- N = ( U normOpOLD W ) |
|
| 2 | nmlno0.0 | |- Z = ( U 0op W ) |
|
| 3 | nmlno0.7 | |- L = ( U LnOp W ) |
|
| 4 | nmlno0i.u | |- U e. NrmCVec |
|
| 5 | nmlno0i.w | |- W e. NrmCVec |
|
| 6 | fveqeq2 | |- ( T = if ( T e. L , T , Z ) -> ( ( N ` T ) = 0 <-> ( N ` if ( T e. L , T , Z ) ) = 0 ) ) |
|
| 7 | eqeq1 | |- ( T = if ( T e. L , T , Z ) -> ( T = Z <-> if ( T e. L , T , Z ) = Z ) ) |
|
| 8 | 6 7 | bibi12d | |- ( T = if ( T e. L , T , Z ) -> ( ( ( N ` T ) = 0 <-> T = Z ) <-> ( ( N ` if ( T e. L , T , Z ) ) = 0 <-> if ( T e. L , T , Z ) = Z ) ) ) |
| 9 | 2 3 | 0lno | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z e. L ) |
| 10 | 4 5 9 | mp2an | |- Z e. L |
| 11 | 10 | elimel | |- if ( T e. L , T , Z ) e. L |
| 12 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 13 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 14 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 15 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 16 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 17 | eqid | |- ( 0vec ` W ) = ( 0vec ` W ) |
|
| 18 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 19 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 20 | 1 2 3 4 5 11 12 13 14 15 16 17 18 19 | nmlno0lem | |- ( ( N ` if ( T e. L , T , Z ) ) = 0 <-> if ( T e. L , T , Z ) = Z ) |
| 21 | 8 20 | dedth | |- ( T e. L -> ( ( N ` T ) = 0 <-> T = Z ) ) |