This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0oo.1 | |- X = ( BaseSet ` U ) |
|
| 0oo.2 | |- Y = ( BaseSet ` W ) |
||
| 0oo.0 | |- Z = ( U 0op W ) |
||
| Assertion | 0oo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z : X --> Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oo.1 | |- X = ( BaseSet ` U ) |
|
| 2 | 0oo.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | 0oo.0 | |- Z = ( U 0op W ) |
|
| 4 | fvex | |- ( 0vec ` W ) e. _V |
|
| 5 | 4 | fconst | |- ( X X. { ( 0vec ` W ) } ) : X --> { ( 0vec ` W ) } |
| 6 | eqid | |- ( 0vec ` W ) = ( 0vec ` W ) |
|
| 7 | 2 6 | nvzcl | |- ( W e. NrmCVec -> ( 0vec ` W ) e. Y ) |
| 8 | 7 | snssd | |- ( W e. NrmCVec -> { ( 0vec ` W ) } C_ Y ) |
| 9 | fss | |- ( ( ( X X. { ( 0vec ` W ) } ) : X --> { ( 0vec ` W ) } /\ { ( 0vec ` W ) } C_ Y ) -> ( X X. { ( 0vec ` W ) } ) : X --> Y ) |
|
| 10 | 5 8 9 | sylancr | |- ( W e. NrmCVec -> ( X X. { ( 0vec ` W ) } ) : X --> Y ) |
| 11 | 10 | adantl | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( X X. { ( 0vec ` W ) } ) : X --> Y ) |
| 12 | 1 6 3 | 0ofval | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z = ( X X. { ( 0vec ` W ) } ) ) |
| 13 | 12 | feq1d | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( Z : X --> Y <-> ( X X. { ( 0vec ` W ) } ) : X --> Y ) ) |
| 14 | 11 13 | mpbird | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z : X --> Y ) |