This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 18-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lno0.1 | |- X = ( BaseSet ` U ) |
|
| lno0.2 | |- Y = ( BaseSet ` W ) |
||
| lno0.5 | |- Q = ( 0vec ` U ) |
||
| lno0.z | |- Z = ( 0vec ` W ) |
||
| lno0.7 | |- L = ( U LnOp W ) |
||
| Assertion | lno0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` Q ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lno0.1 | |- X = ( BaseSet ` U ) |
|
| 2 | lno0.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | lno0.5 | |- Q = ( 0vec ` U ) |
|
| 4 | lno0.z | |- Z = ( 0vec ` W ) |
|
| 5 | lno0.7 | |- L = ( U LnOp W ) |
|
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | 6 | a1i | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> -u 1 e. CC ) |
| 8 | 1 3 | nvzcl | |- ( U e. NrmCVec -> Q e. X ) |
| 9 | 8 | 3ad2ant1 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> Q e. X ) |
| 10 | 7 9 9 | 3jca | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( -u 1 e. CC /\ Q e. X /\ Q e. X ) ) |
| 11 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 12 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 13 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 14 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 15 | 1 2 11 12 13 14 5 | lnolin | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( -u 1 e. CC /\ Q e. X /\ Q e. X ) ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` Q ) ) ( +v ` W ) ( T ` Q ) ) ) |
| 16 | 10 15 | mpdan | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` Q ) ) ( +v ` W ) ( T ` Q ) ) ) |
| 17 | 1 11 13 3 | nvlinv | |- ( ( U e. NrmCVec /\ Q e. X ) -> ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) = Q ) |
| 18 | 8 17 | mpdan | |- ( U e. NrmCVec -> ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) = Q ) |
| 19 | 18 | fveq2d | |- ( U e. NrmCVec -> ( T ` ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) ) = ( T ` Q ) ) |
| 20 | 19 | 3ad2ant1 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) ) = ( T ` Q ) ) |
| 21 | simp2 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> W e. NrmCVec ) |
|
| 22 | 1 2 5 | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> Y ) |
| 23 | 22 9 | ffvelcdmd | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` Q ) e. Y ) |
| 24 | 2 12 14 4 | nvlinv | |- ( ( W e. NrmCVec /\ ( T ` Q ) e. Y ) -> ( ( -u 1 ( .sOLD ` W ) ( T ` Q ) ) ( +v ` W ) ( T ` Q ) ) = Z ) |
| 25 | 21 23 24 | syl2anc | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( -u 1 ( .sOLD ` W ) ( T ` Q ) ) ( +v ` W ) ( T ` Q ) ) = Z ) |
| 26 | 16 20 25 | 3eqtr3d | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` Q ) = Z ) |