This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero norm is positive. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvgt0.1 | |- X = ( BaseSet ` U ) |
|
| nvgt0.5 | |- Z = ( 0vec ` U ) |
||
| nvgt0.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvgt0 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= Z <-> 0 < ( N ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvgt0.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvgt0.5 | |- Z = ( 0vec ` U ) |
|
| 3 | nvgt0.6 | |- N = ( normCV ` U ) |
|
| 4 | 1 2 3 | nvz | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = Z ) ) |
| 5 | 4 | necon3bid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> A =/= Z ) ) |
| 6 | 1 3 | nvcl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
| 7 | 1 3 | nvge0 | |- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) |
| 8 | ne0gt0 | |- ( ( ( N ` A ) e. RR /\ 0 <_ ( N ` A ) ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) |
| 10 | 5 9 | bitr3d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= Z <-> 0 < ( N ` A ) ) ) |