This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoo0.3 | |- N = ( U normOpOLD W ) |
|
| nmoo0.0 | |- Z = ( U 0op W ) |
||
| Assertion | nmoo0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( N ` Z ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoo0.3 | |- N = ( U normOpOLD W ) |
|
| 2 | nmoo0.0 | |- Z = ( U 0op W ) |
|
| 3 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 4 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 5 | 3 4 2 | 0oo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z : ( BaseSet ` U ) --> ( BaseSet ` W ) ) |
| 6 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 7 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 8 | 3 4 6 7 1 | nmooval | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ Z : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> ( N ` Z ) = sup ( { x | E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( Z ` z ) ) ) } , RR* , < ) ) |
| 9 | 5 8 | mpd3an3 | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( N ` Z ) = sup ( { x | E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( Z ` z ) ) ) } , RR* , < ) ) |
| 10 | df-sn | |- { 0 } = { x | x = 0 } |
|
| 11 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 12 | 3 11 | nvzcl | |- ( U e. NrmCVec -> ( 0vec ` U ) e. ( BaseSet ` U ) ) |
| 13 | 11 6 | nvz0 | |- ( U e. NrmCVec -> ( ( normCV ` U ) ` ( 0vec ` U ) ) = 0 ) |
| 14 | 0le1 | |- 0 <_ 1 |
|
| 15 | 13 14 | eqbrtrdi | |- ( U e. NrmCVec -> ( ( normCV ` U ) ` ( 0vec ` U ) ) <_ 1 ) |
| 16 | fveq2 | |- ( z = ( 0vec ` U ) -> ( ( normCV ` U ) ` z ) = ( ( normCV ` U ) ` ( 0vec ` U ) ) ) |
|
| 17 | 16 | breq1d | |- ( z = ( 0vec ` U ) -> ( ( ( normCV ` U ) ` z ) <_ 1 <-> ( ( normCV ` U ) ` ( 0vec ` U ) ) <_ 1 ) ) |
| 18 | 17 | rspcev | |- ( ( ( 0vec ` U ) e. ( BaseSet ` U ) /\ ( ( normCV ` U ) ` ( 0vec ` U ) ) <_ 1 ) -> E. z e. ( BaseSet ` U ) ( ( normCV ` U ) ` z ) <_ 1 ) |
| 19 | 12 15 18 | syl2anc | |- ( U e. NrmCVec -> E. z e. ( BaseSet ` U ) ( ( normCV ` U ) ` z ) <_ 1 ) |
| 20 | 19 | biantrurd | |- ( U e. NrmCVec -> ( x = 0 <-> ( E. z e. ( BaseSet ` U ) ( ( normCV ` U ) ` z ) <_ 1 /\ x = 0 ) ) ) |
| 21 | 20 | adantr | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( x = 0 <-> ( E. z e. ( BaseSet ` U ) ( ( normCV ` U ) ` z ) <_ 1 /\ x = 0 ) ) ) |
| 22 | eqid | |- ( 0vec ` W ) = ( 0vec ` W ) |
|
| 23 | 3 22 2 | 0oval | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ z e. ( BaseSet ` U ) ) -> ( Z ` z ) = ( 0vec ` W ) ) |
| 24 | 23 | 3expa | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ z e. ( BaseSet ` U ) ) -> ( Z ` z ) = ( 0vec ` W ) ) |
| 25 | 24 | fveq2d | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ z e. ( BaseSet ` U ) ) -> ( ( normCV ` W ) ` ( Z ` z ) ) = ( ( normCV ` W ) ` ( 0vec ` W ) ) ) |
| 26 | 22 7 | nvz0 | |- ( W e. NrmCVec -> ( ( normCV ` W ) ` ( 0vec ` W ) ) = 0 ) |
| 27 | 26 | ad2antlr | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ z e. ( BaseSet ` U ) ) -> ( ( normCV ` W ) ` ( 0vec ` W ) ) = 0 ) |
| 28 | 25 27 | eqtrd | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ z e. ( BaseSet ` U ) ) -> ( ( normCV ` W ) ` ( Z ` z ) ) = 0 ) |
| 29 | 28 | eqeq2d | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ z e. ( BaseSet ` U ) ) -> ( x = ( ( normCV ` W ) ` ( Z ` z ) ) <-> x = 0 ) ) |
| 30 | 29 | anbi2d | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ z e. ( BaseSet ` U ) ) -> ( ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( Z ` z ) ) ) <-> ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = 0 ) ) ) |
| 31 | 30 | rexbidva | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( Z ` z ) ) ) <-> E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = 0 ) ) ) |
| 32 | r19.41v | |- ( E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = 0 ) <-> ( E. z e. ( BaseSet ` U ) ( ( normCV ` U ) ` z ) <_ 1 /\ x = 0 ) ) |
|
| 33 | 31 32 | bitr2di | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( ( E. z e. ( BaseSet ` U ) ( ( normCV ` U ) ` z ) <_ 1 /\ x = 0 ) <-> E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( Z ` z ) ) ) ) ) |
| 34 | 21 33 | bitrd | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( x = 0 <-> E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( Z ` z ) ) ) ) ) |
| 35 | 34 | abbidv | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> { x | x = 0 } = { x | E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( Z ` z ) ) ) } ) |
| 36 | 10 35 | eqtr2id | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> { x | E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( Z ` z ) ) ) } = { 0 } ) |
| 37 | 36 | supeq1d | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> sup ( { x | E. z e. ( BaseSet ` U ) ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( Z ` z ) ) ) } , RR* , < ) = sup ( { 0 } , RR* , < ) ) |
| 38 | 9 37 | eqtrd | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( N ` Z ) = sup ( { 0 } , RR* , < ) ) |
| 39 | xrltso | |- < Or RR* |
|
| 40 | 0xr | |- 0 e. RR* |
|
| 41 | supsn | |- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
|
| 42 | 39 40 41 | mp2an | |- sup ( { 0 } , RR* , < ) = 0 |
| 43 | 38 42 | eqtrdi | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( N ` Z ) = 0 ) |