This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0oval.1 | |- X = ( BaseSet ` U ) |
|
| 0oval.6 | |- Z = ( 0vec ` W ) |
||
| 0oval.0 | |- O = ( U 0op W ) |
||
| Assertion | 0oval | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ A e. X ) -> ( O ` A ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | 0oval.6 | |- Z = ( 0vec ` W ) |
|
| 3 | 0oval.0 | |- O = ( U 0op W ) |
|
| 4 | 1 2 3 | 0ofval | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> O = ( X X. { Z } ) ) |
| 5 | 4 | fveq1d | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( O ` A ) = ( ( X X. { Z } ) ` A ) ) |
| 6 | 5 | 3adant3 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ A e. X ) -> ( O ` A ) = ( ( X X. { Z } ) ` A ) ) |
| 7 | 2 | fvexi | |- Z e. _V |
| 8 | 7 | fvconst2 | |- ( A e. X -> ( ( X X. { Z } ) ` A ) = Z ) |
| 9 | 8 | 3ad2ant3 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ A e. X ) -> ( ( X X. { Z } ) ` A ) = Z ) |
| 10 | 6 9 | eqtrd | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ A e. X ) -> ( O ` A ) = Z ) |