This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 18-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnof.1 | |- X = ( BaseSet ` U ) |
|
| lnof.2 | |- Y = ( BaseSet ` W ) |
||
| lnof.7 | |- L = ( U LnOp W ) |
||
| Assertion | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnof.1 | |- X = ( BaseSet ` U ) |
|
| 2 | lnof.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | lnof.7 | |- L = ( U LnOp W ) |
|
| 4 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 5 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 6 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 7 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 8 | 1 2 4 5 6 7 3 | islno | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. L <-> ( T : X --> Y /\ A. x e. CC A. y e. X A. z e. X ( T ` ( ( x ( .sOLD ` U ) y ) ( +v ` U ) z ) ) = ( ( x ( .sOLD ` W ) ( T ` y ) ) ( +v ` W ) ( T ` z ) ) ) ) ) |
| 9 | 8 | simprbda | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ T e. L ) -> T : X --> Y ) |
| 10 | 9 | 3impa | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> Y ) |