This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvz.1 | |- X = ( BaseSet ` U ) |
|
| nvz.5 | |- Z = ( 0vec ` U ) |
||
| nvz.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvz | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvz.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvz.5 | |- Z = ( 0vec ` U ) |
|
| 3 | nvz.6 | |- N = ( normCV ` U ) |
|
| 4 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 5 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 6 | 1 4 5 2 3 | nvi | |- ( U e. NrmCVec -> ( <. ( +v ` U ) , ( .sOLD ` U ) >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| 7 | 6 | simp3d | |- ( U e. NrmCVec -> A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) |
| 8 | simp1 | |- ( ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) -> ( ( N ` x ) = 0 -> x = Z ) ) |
|
| 9 | 8 | ralimi | |- ( A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) -> A. x e. X ( ( N ` x ) = 0 -> x = Z ) ) |
| 10 | fveqeq2 | |- ( x = A -> ( ( N ` x ) = 0 <-> ( N ` A ) = 0 ) ) |
|
| 11 | eqeq1 | |- ( x = A -> ( x = Z <-> A = Z ) ) |
|
| 12 | 10 11 | imbi12d | |- ( x = A -> ( ( ( N ` x ) = 0 -> x = Z ) <-> ( ( N ` A ) = 0 -> A = Z ) ) ) |
| 13 | 12 | rspccv | |- ( A. x e. X ( ( N ` x ) = 0 -> x = Z ) -> ( A e. X -> ( ( N ` A ) = 0 -> A = Z ) ) ) |
| 14 | 7 9 13 | 3syl | |- ( U e. NrmCVec -> ( A e. X -> ( ( N ` A ) = 0 -> A = Z ) ) ) |
| 15 | 14 | imp | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 -> A = Z ) ) |
| 16 | fveq2 | |- ( A = Z -> ( N ` A ) = ( N ` Z ) ) |
|
| 17 | 2 3 | nvz0 | |- ( U e. NrmCVec -> ( N ` Z ) = 0 ) |
| 18 | 16 17 | sylan9eqr | |- ( ( U e. NrmCVec /\ A = Z ) -> ( N ` A ) = 0 ) |
| 19 | 18 | ex | |- ( U e. NrmCVec -> ( A = Z -> ( N ` A ) = 0 ) ) |
| 20 | 19 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A = Z -> ( N ` A ) = 0 ) ) |
| 21 | 15 20 | impbid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = Z ) ) |