This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmul0or.1 | |- X = ( BaseSet ` U ) |
|
| nvmul0or.4 | |- S = ( .sOLD ` U ) |
||
| nvmul0or.6 | |- Z = ( 0vec ` U ) |
||
| Assertion | nvmul0or | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A S B ) = Z <-> ( A = 0 \/ B = Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmul0or.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvmul0or.4 | |- S = ( .sOLD ` U ) |
|
| 3 | nvmul0or.6 | |- Z = ( 0vec ` U ) |
|
| 4 | df-ne | |- ( A =/= 0 <-> -. A = 0 ) |
|
| 5 | oveq2 | |- ( ( A S B ) = Z -> ( ( 1 / A ) S ( A S B ) ) = ( ( 1 / A ) S Z ) ) |
|
| 6 | 5 | ad2antlr | |- ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> ( ( 1 / A ) S ( A S B ) ) = ( ( 1 / A ) S Z ) ) |
| 7 | recid2 | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / A ) x. A ) = 1 ) |
|
| 8 | 7 | oveq1d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( 1 / A ) x. A ) S B ) = ( 1 S B ) ) |
| 9 | 8 | 3ad2antl2 | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( ( 1 / A ) x. A ) S B ) = ( 1 S B ) ) |
| 10 | simpl1 | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> U e. NrmCVec ) |
|
| 11 | reccl | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
|
| 12 | 11 | 3ad2antl2 | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
| 13 | simpl2 | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> A e. CC ) |
|
| 14 | simpl3 | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> B e. X ) |
|
| 15 | 1 2 | nvsass | |- ( ( U e. NrmCVec /\ ( ( 1 / A ) e. CC /\ A e. CC /\ B e. X ) ) -> ( ( ( 1 / A ) x. A ) S B ) = ( ( 1 / A ) S ( A S B ) ) ) |
| 16 | 10 12 13 14 15 | syl13anc | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( ( 1 / A ) x. A ) S B ) = ( ( 1 / A ) S ( A S B ) ) ) |
| 17 | 1 2 | nvsid | |- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
| 18 | 17 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( 1 S B ) = B ) |
| 19 | 18 | adantr | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( 1 S B ) = B ) |
| 20 | 9 16 19 | 3eqtr3d | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( 1 / A ) S ( A S B ) ) = B ) |
| 21 | 20 | adantlr | |- ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> ( ( 1 / A ) S ( A S B ) ) = B ) |
| 22 | 2 3 | nvsz | |- ( ( U e. NrmCVec /\ ( 1 / A ) e. CC ) -> ( ( 1 / A ) S Z ) = Z ) |
| 23 | 11 22 | sylan2 | |- ( ( U e. NrmCVec /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( 1 / A ) S Z ) = Z ) |
| 24 | 23 | anassrs | |- ( ( ( U e. NrmCVec /\ A e. CC ) /\ A =/= 0 ) -> ( ( 1 / A ) S Z ) = Z ) |
| 25 | 24 | 3adantl3 | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( 1 / A ) S Z ) = Z ) |
| 26 | 25 | adantlr | |- ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> ( ( 1 / A ) S Z ) = Z ) |
| 27 | 6 21 26 | 3eqtr3d | |- ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> B = Z ) |
| 28 | 27 | ex | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) -> ( A =/= 0 -> B = Z ) ) |
| 29 | 4 28 | biimtrrid | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) -> ( -. A = 0 -> B = Z ) ) |
| 30 | 29 | orrd | |- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) -> ( A = 0 \/ B = Z ) ) |
| 31 | 30 | ex | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A S B ) = Z -> ( A = 0 \/ B = Z ) ) ) |
| 32 | 1 2 3 | nv0 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( 0 S B ) = Z ) |
| 33 | oveq1 | |- ( A = 0 -> ( A S B ) = ( 0 S B ) ) |
|
| 34 | 33 | eqeq1d | |- ( A = 0 -> ( ( A S B ) = Z <-> ( 0 S B ) = Z ) ) |
| 35 | 32 34 | syl5ibrcom | |- ( ( U e. NrmCVec /\ B e. X ) -> ( A = 0 -> ( A S B ) = Z ) ) |
| 36 | 35 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( A = 0 -> ( A S B ) = Z ) ) |
| 37 | 2 3 | nvsz | |- ( ( U e. NrmCVec /\ A e. CC ) -> ( A S Z ) = Z ) |
| 38 | oveq2 | |- ( B = Z -> ( A S B ) = ( A S Z ) ) |
|
| 39 | 38 | eqeq1d | |- ( B = Z -> ( ( A S B ) = Z <-> ( A S Z ) = Z ) ) |
| 40 | 37 39 | syl5ibrcom | |- ( ( U e. NrmCVec /\ A e. CC ) -> ( B = Z -> ( A S B ) = Z ) ) |
| 41 | 40 | 3adant3 | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( B = Z -> ( A S B ) = Z ) ) |
| 42 | 36 41 | jaod | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A = 0 \/ B = Z ) -> ( A S B ) = Z ) ) |
| 43 | 31 42 | impbid | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A S B ) = Z <-> ( A = 0 \/ B = Z ) ) ) |