This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the operator norm definition df-nmoo is a set of reals. (Contributed by NM, 13-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmosetre.2 | |- Y = ( BaseSet ` W ) |
|
| nmosetre.4 | |- N = ( normCV ` W ) |
||
| Assertion | nmosetre | |- ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( M ` z ) <_ 1 /\ x = ( N ` ( T ` z ) ) ) } C_ RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmosetre.2 | |- Y = ( BaseSet ` W ) |
|
| 2 | nmosetre.4 | |- N = ( normCV ` W ) |
|
| 3 | ffvelcdm | |- ( ( T : X --> Y /\ z e. X ) -> ( T ` z ) e. Y ) |
|
| 4 | 1 2 | nvcl | |- ( ( W e. NrmCVec /\ ( T ` z ) e. Y ) -> ( N ` ( T ` z ) ) e. RR ) |
| 5 | 3 4 | sylan2 | |- ( ( W e. NrmCVec /\ ( T : X --> Y /\ z e. X ) ) -> ( N ` ( T ` z ) ) e. RR ) |
| 6 | 5 | anassrs | |- ( ( ( W e. NrmCVec /\ T : X --> Y ) /\ z e. X ) -> ( N ` ( T ` z ) ) e. RR ) |
| 7 | eleq1 | |- ( x = ( N ` ( T ` z ) ) -> ( x e. RR <-> ( N ` ( T ` z ) ) e. RR ) ) |
|
| 8 | 6 7 | imbitrrid | |- ( x = ( N ` ( T ` z ) ) -> ( ( ( W e. NrmCVec /\ T : X --> Y ) /\ z e. X ) -> x e. RR ) ) |
| 9 | 8 | impcom | |- ( ( ( ( W e. NrmCVec /\ T : X --> Y ) /\ z e. X ) /\ x = ( N ` ( T ` z ) ) ) -> x e. RR ) |
| 10 | 9 | adantrl | |- ( ( ( ( W e. NrmCVec /\ T : X --> Y ) /\ z e. X ) /\ ( ( M ` z ) <_ 1 /\ x = ( N ` ( T ` z ) ) ) ) -> x e. RR ) |
| 11 | 10 | rexlimdva2 | |- ( ( W e. NrmCVec /\ T : X --> Y ) -> ( E. z e. X ( ( M ` z ) <_ 1 /\ x = ( N ` ( T ` z ) ) ) -> x e. RR ) ) |
| 12 | 11 | abssdv | |- ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( M ` z ) <_ 1 /\ x = ( N ` ( T ` z ) ) ) } C_ RR ) |