This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm function. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoofval.1 | |- X = ( BaseSet ` U ) |
|
| nmoofval.2 | |- Y = ( BaseSet ` W ) |
||
| nmoofval.3 | |- L = ( normCV ` U ) |
||
| nmoofval.4 | |- M = ( normCV ` W ) |
||
| nmoofval.6 | |- N = ( U normOpOLD W ) |
||
| Assertion | nmooval | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoofval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmoofval.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | nmoofval.3 | |- L = ( normCV ` U ) |
|
| 4 | nmoofval.4 | |- M = ( normCV ` W ) |
|
| 5 | nmoofval.6 | |- N = ( U normOpOLD W ) |
|
| 6 | 2 | fvexi | |- Y e. _V |
| 7 | 1 | fvexi | |- X e. _V |
| 8 | 6 7 | elmap | |- ( T e. ( Y ^m X ) <-> T : X --> Y ) |
| 9 | 1 2 3 4 5 | nmoofval | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> N = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) |
| 10 | 9 | fveq1d | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( N ` T ) = ( ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ` T ) ) |
| 11 | fveq1 | |- ( t = T -> ( t ` z ) = ( T ` z ) ) |
|
| 12 | 11 | fveq2d | |- ( t = T -> ( M ` ( t ` z ) ) = ( M ` ( T ` z ) ) ) |
| 13 | 12 | eqeq2d | |- ( t = T -> ( x = ( M ` ( t ` z ) ) <-> x = ( M ` ( T ` z ) ) ) ) |
| 14 | 13 | anbi2d | |- ( t = T -> ( ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) <-> ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) ) ) |
| 15 | 14 | rexbidv | |- ( t = T -> ( E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) <-> E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) ) ) |
| 16 | 15 | abbidv | |- ( t = T -> { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } = { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) } ) |
| 17 | 16 | supeq1d | |- ( t = T -> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 18 | eqid | |- ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) |
|
| 19 | xrltso | |- < Or RR* |
|
| 20 | 19 | supex | |- sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) } , RR* , < ) e. _V |
| 21 | 17 18 20 | fvmpt | |- ( T e. ( Y ^m X ) -> ( ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ` T ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 22 | 10 21 | sylan9eq | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ T e. ( Y ^m X ) ) -> ( N ` T ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 23 | 8 22 | sylan2br | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ T : X --> Y ) -> ( N ` T ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 24 | 23 | 3impa | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |