This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nv1.1 | |- X = ( BaseSet ` U ) |
|
| nv1.4 | |- S = ( .sOLD ` U ) |
||
| nv1.5 | |- Z = ( 0vec ` U ) |
||
| nv1.6 | |- N = ( normCV ` U ) |
||
| Assertion | nv1 | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` ( ( 1 / ( N ` A ) ) S A ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nv1.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nv1.4 | |- S = ( .sOLD ` U ) |
|
| 3 | nv1.5 | |- Z = ( 0vec ` U ) |
|
| 4 | nv1.6 | |- N = ( normCV ` U ) |
|
| 5 | simp1 | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> U e. NrmCVec ) |
|
| 6 | 1 4 | nvcl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
| 7 | 6 | 3adant3 | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` A ) e. RR ) |
| 8 | 1 3 4 | nvz | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = Z ) ) |
| 9 | 8 | necon3bid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> A =/= Z ) ) |
| 10 | 9 | biimp3ar | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` A ) =/= 0 ) |
| 11 | 7 10 | rereccld | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( 1 / ( N ` A ) ) e. RR ) |
| 12 | 1 3 4 | nvgt0 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= Z <-> 0 < ( N ` A ) ) ) |
| 13 | 12 | biimp3a | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> 0 < ( N ` A ) ) |
| 14 | 1re | |- 1 e. RR |
|
| 15 | 0le1 | |- 0 <_ 1 |
|
| 16 | divge0 | |- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) -> 0 <_ ( 1 / ( N ` A ) ) ) |
|
| 17 | 14 15 16 | mpanl12 | |- ( ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) -> 0 <_ ( 1 / ( N ` A ) ) ) |
| 18 | 7 13 17 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> 0 <_ ( 1 / ( N ` A ) ) ) |
| 19 | simp2 | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> A e. X ) |
|
| 20 | 1 2 4 | nvsge0 | |- ( ( U e. NrmCVec /\ ( ( 1 / ( N ` A ) ) e. RR /\ 0 <_ ( 1 / ( N ` A ) ) ) /\ A e. X ) -> ( N ` ( ( 1 / ( N ` A ) ) S A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) |
| 21 | 5 11 18 19 20 | syl121anc | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` ( ( 1 / ( N ` A ) ) S A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) |
| 22 | 6 | recnd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. CC ) |
| 23 | 22 | 3adant3 | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` A ) e. CC ) |
| 24 | 23 10 | recid2d | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) = 1 ) |
| 25 | 21 24 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` ( ( 1 / ( N ` A ) ) S A ) ) = 1 ) |