This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005) (Revised by Mario Carneiro, 16-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucvgb.1 | |- Z = ( ZZ>= ` M ) |
|
| serf0.2 | |- ( ph -> M e. ZZ ) |
||
| serf0.3 | |- ( ph -> F e. V ) |
||
| serf0.4 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| serf0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| Assertion | serf0 | |- ( ph -> F ~~> 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgb.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | serf0.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | serf0.3 | |- ( ph -> F e. V ) |
|
| 4 | serf0.4 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 5 | serf0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 6 | 1 | caucvgb | |- ( ( M e. ZZ /\ seq M ( + , F ) e. dom ~~> ) -> ( seq M ( + , F ) e. dom ~~> <-> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 7 | 2 4 6 | syl2anc | |- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 8 | 4 7 | mpbid | |- ( ph -> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
| 9 | 1 | cau3 | |- ( A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` j ) ) ) < x ) <-> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) ) |
| 10 | 8 9 | sylib | |- ( ph -> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) ) |
| 11 | 1 | peano2uzs | |- ( j e. Z -> ( j + 1 ) e. Z ) |
| 12 | 11 | adantl | |- ( ( ph /\ j e. Z ) -> ( j + 1 ) e. Z ) |
| 13 | eluzelz | |- ( m e. ( ZZ>= ` j ) -> m e. ZZ ) |
|
| 14 | uzid | |- ( m e. ZZ -> m e. ( ZZ>= ` m ) ) |
|
| 15 | peano2uz | |- ( m e. ( ZZ>= ` m ) -> ( m + 1 ) e. ( ZZ>= ` m ) ) |
|
| 16 | fveq2 | |- ( k = ( m + 1 ) -> ( seq M ( + , F ) ` k ) = ( seq M ( + , F ) ` ( m + 1 ) ) ) |
|
| 17 | 16 | oveq2d | |- ( k = ( m + 1 ) -> ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) = ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) |
| 18 | 17 | fveq2d | |- ( k = ( m + 1 ) -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) = ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) ) |
| 19 | 18 | breq1d | |- ( k = ( m + 1 ) -> ( ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x <-> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) ) |
| 20 | 19 | rspcv | |- ( ( m + 1 ) e. ( ZZ>= ` m ) -> ( A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) ) |
| 21 | 13 14 15 20 | 4syl | |- ( m e. ( ZZ>= ` j ) -> ( A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) ) |
| 22 | 21 | adantld | |- ( m e. ( ZZ>= ` j ) -> ( ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) ) |
| 23 | 22 | ralimia | |- ( A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) |
| 24 | simpr | |- ( ( ph /\ j e. Z ) -> j e. Z ) |
|
| 25 | 24 1 | eleqtrdi | |- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 26 | eluzelz | |- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
|
| 27 | 25 26 | syl | |- ( ( ph /\ j e. Z ) -> j e. ZZ ) |
| 28 | eluzp1m1 | |- ( ( j e. ZZ /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( k - 1 ) e. ( ZZ>= ` j ) ) |
|
| 29 | 27 28 | sylan | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( k - 1 ) e. ( ZZ>= ` j ) ) |
| 30 | fveq2 | |- ( m = ( k - 1 ) -> ( seq M ( + , F ) ` m ) = ( seq M ( + , F ) ` ( k - 1 ) ) ) |
|
| 31 | fvoveq1 | |- ( m = ( k - 1 ) -> ( seq M ( + , F ) ` ( m + 1 ) ) = ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) |
|
| 32 | 30 31 | oveq12d | |- ( m = ( k - 1 ) -> ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) = ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) |
| 33 | 32 | fveq2d | |- ( m = ( k - 1 ) -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) ) |
| 34 | 33 | breq1d | |- ( m = ( k - 1 ) -> ( ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x <-> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) < x ) ) |
| 35 | 34 | rspcv | |- ( ( k - 1 ) e. ( ZZ>= ` j ) -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) < x ) ) |
| 36 | 29 35 | syl | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) < x ) ) |
| 37 | 1 2 5 | serf | |- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 38 | 37 | ad2antrr | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> seq M ( + , F ) : Z --> CC ) |
| 39 | 1 | uztrn2 | |- ( ( j e. Z /\ ( k - 1 ) e. ( ZZ>= ` j ) ) -> ( k - 1 ) e. Z ) |
| 40 | 24 29 39 | syl2an2r | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( k - 1 ) e. Z ) |
| 41 | 38 40 | ffvelcdmd | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( seq M ( + , F ) ` ( k - 1 ) ) e. CC ) |
| 42 | 1 | uztrn2 | |- ( ( ( j + 1 ) e. Z /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. Z ) |
| 43 | 12 42 | sylan | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. Z ) |
| 44 | 38 43 | ffvelcdmd | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( seq M ( + , F ) ` k ) e. CC ) |
| 45 | 41 44 | abssubd | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` k ) ) ) = ( abs ` ( ( seq M ( + , F ) ` k ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) ) ) |
| 46 | eluzelz | |- ( k e. ( ZZ>= ` ( j + 1 ) ) -> k e. ZZ ) |
|
| 47 | 46 | adantl | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. ZZ ) |
| 48 | 47 | zcnd | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. CC ) |
| 49 | ax-1cn | |- 1 e. CC |
|
| 50 | npcan | |- ( ( k e. CC /\ 1 e. CC ) -> ( ( k - 1 ) + 1 ) = k ) |
|
| 51 | 48 49 50 | sylancl | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( k - 1 ) + 1 ) = k ) |
| 52 | 51 | fveq2d | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) = ( seq M ( + , F ) ` k ) ) |
| 53 | 52 | oveq2d | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) = ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` k ) ) ) |
| 54 | 53 | fveq2d | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` k ) ) ) ) |
| 55 | 2 | ad2antrr | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> M e. ZZ ) |
| 56 | eluzp1p1 | |- ( j e. ( ZZ>= ` M ) -> ( j + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 57 | 25 56 | syl | |- ( ( ph /\ j e. Z ) -> ( j + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 58 | eqid | |- ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` ( M + 1 ) ) |
|
| 59 | 58 | uztrn2 | |- ( ( ( j + 1 ) e. ( ZZ>= ` ( M + 1 ) ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. ( ZZ>= ` ( M + 1 ) ) ) |
| 60 | 57 59 | sylan | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. ( ZZ>= ` ( M + 1 ) ) ) |
| 61 | seqm1 | |- ( ( M e. ZZ /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( + , F ) ` k ) = ( ( seq M ( + , F ) ` ( k - 1 ) ) + ( F ` k ) ) ) |
|
| 62 | 55 60 61 | syl2anc | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( seq M ( + , F ) ` k ) = ( ( seq M ( + , F ) ` ( k - 1 ) ) + ( F ` k ) ) ) |
| 63 | 62 | oveq1d | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( seq M ( + , F ) ` k ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) = ( ( ( seq M ( + , F ) ` ( k - 1 ) ) + ( F ` k ) ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) ) |
| 64 | 5 | adantlr | |- ( ( ( ph /\ j e. Z ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 65 | 43 64 | syldan | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( F ` k ) e. CC ) |
| 66 | 41 65 | pncan2d | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( ( seq M ( + , F ) ` ( k - 1 ) ) + ( F ` k ) ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) = ( F ` k ) ) |
| 67 | 63 66 | eqtr2d | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( F ` k ) = ( ( seq M ( + , F ) ` k ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) ) |
| 68 | 67 | fveq2d | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( abs ` ( F ` k ) ) = ( abs ` ( ( seq M ( + , F ) ` k ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) ) ) |
| 69 | 45 54 68 | 3eqtr4d | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) = ( abs ` ( F ` k ) ) ) |
| 70 | 69 | breq1d | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) < x <-> ( abs ` ( F ` k ) ) < x ) ) |
| 71 | 36 70 | sylibd | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x -> ( abs ` ( F ` k ) ) < x ) ) |
| 72 | 71 | ralrimdva | |- ( ( ph /\ j e. Z ) -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x -> A. k e. ( ZZ>= ` ( j + 1 ) ) ( abs ` ( F ` k ) ) < x ) ) |
| 73 | 23 72 | syl5 | |- ( ( ph /\ j e. Z ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> A. k e. ( ZZ>= ` ( j + 1 ) ) ( abs ` ( F ` k ) ) < x ) ) |
| 74 | fveq2 | |- ( n = ( j + 1 ) -> ( ZZ>= ` n ) = ( ZZ>= ` ( j + 1 ) ) ) |
|
| 75 | 74 | raleqdv | |- ( n = ( j + 1 ) -> ( A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x <-> A. k e. ( ZZ>= ` ( j + 1 ) ) ( abs ` ( F ` k ) ) < x ) ) |
| 76 | 75 | rspcev | |- ( ( ( j + 1 ) e. Z /\ A. k e. ( ZZ>= ` ( j + 1 ) ) ( abs ` ( F ` k ) ) < x ) -> E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) |
| 77 | 12 73 76 | syl6an | |- ( ( ph /\ j e. Z ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) ) |
| 78 | 77 | rexlimdva | |- ( ph -> ( E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) ) |
| 79 | 78 | ralimdv | |- ( ph -> ( A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> A. x e. RR+ E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) ) |
| 80 | 10 79 | mpd | |- ( ph -> A. x e. RR+ E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) |
| 81 | eqidd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
|
| 82 | 1 2 3 81 5 | clim0c | |- ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) ) |
| 83 | 80 82 | mpbird | |- ( ph -> F ~~> 0 ) |