This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mertens . (Contributed by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mertens.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) | |
| mertens.2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) | ||
| mertens.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | ||
| mertens.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) | ||
| mertens.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) | ||
| mertens.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) | ||
| mertens.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) | ||
| mertens.8 | ⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) | ||
| mertens.9 | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | ||
| mertens.10 | ⊢ 𝑇 = { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } | ||
| mertens.11 | ⊢ ( 𝜓 ↔ ( 𝑠 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) | ||
| Assertion | mertenslem2 | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mertens.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) | |
| 2 | mertens.2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) | |
| 3 | mertens.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 4 | mertens.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) | |
| 5 | mertens.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) | |
| 6 | mertens.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) | |
| 7 | mertens.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) | |
| 8 | mertens.8 | ⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) | |
| 9 | mertens.9 | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | |
| 10 | mertens.10 | ⊢ 𝑇 = { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } | |
| 11 | mertens.11 | ⊢ ( 𝜓 ↔ ( 𝑠 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) | |
| 12 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 13 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 14 | 9 | rphalfcld | ⊢ ( 𝜑 → ( 𝐸 / 2 ) ∈ ℝ+ ) |
| 15 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 16 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 17 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( 𝐾 ‘ 𝑗 ) ) | |
| 18 | 3 | abscld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 19 | 2 18 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) ∈ ℝ ) |
| 20 | 15 16 17 19 7 | isumrecl | ⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) ∈ ℝ ) |
| 21 | 3 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 22 | 21 2 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 0 ≤ ( 𝐾 ‘ 𝑗 ) ) |
| 23 | 15 16 17 19 7 22 | isumge0 | ⊢ ( 𝜑 → 0 ≤ Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) ) |
| 24 | 20 23 | ge0p1rpd | ⊢ ( 𝜑 → ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ∈ ℝ+ ) |
| 25 | 14 24 | rpdivcld | ⊢ ( 𝜑 → ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ∈ ℝ+ ) |
| 26 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) | |
| 27 | 15 16 4 5 8 | isumclim2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ℕ0 𝐵 ) |
| 28 | 12 13 25 26 27 | climi2 | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
| 29 | eluznn | ⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ) → 𝑚 ∈ ℕ ) | |
| 30 | 4 5 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 31 | 15 16 30 | serf | ⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℂ ) |
| 32 | nnnn0 | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) | |
| 33 | ffvelcdm | ⊢ ( ( seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ∈ ℂ ) | |
| 34 | 31 32 33 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ∈ ℂ ) |
| 35 | 15 16 4 5 8 | isumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 37 | 34 36 | abssubd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) = ( abs ‘ ( Σ 𝑘 ∈ ℕ0 𝐵 − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 38 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) = ( ℤ≥ ‘ ( 𝑚 + 1 ) ) | |
| 39 | 32 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ0 ) |
| 40 | peano2nn0 | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 42 | 41 | nn0zd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℤ ) |
| 43 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝜑 ) | |
| 44 | eluznn0 | ⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) | |
| 45 | 41 44 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 46 | 43 45 4 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 47 | 43 45 5 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 48 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 49 | 30 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 50 | 15 41 49 | iserex | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq ( 𝑚 + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| 51 | 48 50 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → seq ( 𝑚 + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) |
| 52 | 38 42 46 47 51 | isumcl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ∈ ℂ ) |
| 53 | 34 52 | pncan2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) |
| 54 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 55 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 56 | 15 38 41 54 55 48 | isumsplit | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) ) |
| 57 | nncn | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) | |
| 58 | 57 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 59 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 60 | pncan | ⊢ ( ( 𝑚 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) | |
| 61 | 58 59 60 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 62 | 61 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 0 ... 𝑚 ) ) |
| 63 | 62 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝐵 = Σ 𝑘 ∈ ( 0 ... 𝑚 ) 𝐵 ) |
| 64 | simpl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝜑 ) | |
| 65 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑚 ) → 𝑘 ∈ ℕ0 ) | |
| 66 | 64 65 4 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 67 | 39 15 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
| 68 | 64 65 5 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → 𝐵 ∈ ℂ ) |
| 69 | 66 67 68 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... 𝑚 ) 𝐵 = ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) |
| 70 | 63 69 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝐵 = ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) |
| 71 | 70 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) ) |
| 72 | 56 71 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) ) |
| 73 | 72 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( Σ 𝑘 ∈ ℕ0 𝐵 − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
| 74 | 46 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) |
| 75 | 53 73 74 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( Σ 𝑘 ∈ ℕ0 𝐵 − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 76 | 75 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( Σ 𝑘 ∈ ℕ0 𝐵 − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 77 | 37 76 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 78 | 77 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 79 | 29 78 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ) ) → ( ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 80 | 79 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ) → ( ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 81 | 80 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 82 | fvoveq1 | ⊢ ( 𝑚 = 𝑛 → ( ℤ≥ ‘ ( 𝑚 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) | |
| 83 | 82 | sumeq1d | ⊢ ( 𝑚 = 𝑛 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 84 | 83 | fveq2d | ⊢ ( 𝑚 = 𝑛 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 85 | 84 | breq1d | ⊢ ( 𝑚 = 𝑛 → ( ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 86 | 85 | cbvralvw | ⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
| 87 | 81 86 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 88 | 0zd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ∈ ℤ ) | |
| 89 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐸 / 2 ) ∈ ℝ+ ) |
| 90 | 11 | simplbi | ⊢ ( 𝜓 → 𝑠 ∈ ℕ ) |
| 91 | 90 | adantl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑠 ∈ ℕ ) |
| 92 | 91 | nnrpd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑠 ∈ ℝ+ ) |
| 93 | 89 92 | rpdivcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐸 / 2 ) / 𝑠 ) ∈ ℝ+ ) |
| 94 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) | |
| 95 | elfznn0 | ⊢ ( 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) → 𝑛 ∈ ℕ0 ) | |
| 96 | 95 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 97 | peano2nn0 | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ0 ) | |
| 98 | 96 97 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 99 | 98 | nn0zd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ℤ ) |
| 100 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 101 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝜑 ) | |
| 102 | eluznn0 | ⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) | |
| 103 | 98 102 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 104 | 101 103 30 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 105 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 106 | 30 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 107 | 15 98 106 | iserex | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq ( 𝑛 + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| 108 | 105 107 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → seq ( 𝑛 + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) |
| 109 | 94 99 100 104 108 | isumcl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 110 | 109 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 111 | eleq1a | ⊢ ( ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ → ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) → 𝑧 ∈ ℝ ) ) | |
| 112 | 110 111 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) → 𝑧 ∈ ℝ ) ) |
| 113 | 112 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) → 𝑧 ∈ ℝ ) ) |
| 114 | 113 | abssdv | ⊢ ( ( 𝜑 ∧ 𝜓 ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } ⊆ ℝ ) |
| 115 | 10 114 | eqsstrid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑇 ⊆ ℝ ) |
| 116 | fzfid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 0 ... ( 𝑠 − 1 ) ) ∈ Fin ) | |
| 117 | abrexfi | ⊢ ( ( 0 ... ( 𝑠 − 1 ) ) ∈ Fin → { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } ∈ Fin ) | |
| 118 | 116 117 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } ∈ Fin ) |
| 119 | 10 118 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑇 ∈ Fin ) |
| 120 | nnm1nn0 | ⊢ ( 𝑠 ∈ ℕ → ( 𝑠 − 1 ) ∈ ℕ0 ) | |
| 121 | 91 120 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑠 − 1 ) ∈ ℕ0 ) |
| 122 | 121 15 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑠 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 123 | eluzfz1 | ⊢ ( ( 𝑠 − 1 ) ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) | |
| 124 | 122 123 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) |
| 125 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 126 | 125 4 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 127 | 126 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ 𝐵 ) |
| 128 | 127 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ 𝐵 ) |
| 129 | 128 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ) |
| 130 | 129 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) ) |
| 131 | fv0p1e1 | ⊢ ( 𝑛 = 0 → ( ℤ≥ ‘ ( 𝑛 + 1 ) ) = ( ℤ≥ ‘ 1 ) ) | |
| 132 | 131 12 | eqtr4di | ⊢ ( 𝑛 = 0 → ( ℤ≥ ‘ ( 𝑛 + 1 ) ) = ℕ ) |
| 133 | 132 | sumeq1d | ⊢ ( 𝑛 = 0 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) |
| 134 | 133 | fveq2d | ⊢ ( 𝑛 = 0 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) ) |
| 135 | 134 | rspceeqv | ⊢ ( ( 0 ∈ ( 0 ... ( 𝑠 − 1 ) ) ∧ ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 136 | 124 130 135 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 137 | fvex | ⊢ ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ∈ V | |
| 138 | eqeq1 | ⊢ ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) → ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) | |
| 139 | 138 | rexbidv | ⊢ ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) → ( ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 140 | 137 139 10 | elab2 | ⊢ ( ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ∈ 𝑇 ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 141 | 136 140 | sylibr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ∈ 𝑇 ) |
| 142 | 141 | ne0d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑇 ≠ ∅ ) |
| 143 | ltso | ⊢ < Or ℝ | |
| 144 | fisupcl | ⊢ ( ( < Or ℝ ∧ ( 𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ∧ 𝑇 ⊆ ℝ ) ) → sup ( 𝑇 , ℝ , < ) ∈ 𝑇 ) | |
| 145 | 143 144 | mpan | ⊢ ( ( 𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ∧ 𝑇 ⊆ ℝ ) → sup ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 146 | 119 142 115 145 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → sup ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 147 | 115 146 | sseldd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → sup ( 𝑇 , ℝ , < ) ∈ ℝ ) |
| 148 | 0red | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ∈ ℝ ) | |
| 149 | 125 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 150 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 151 | 150 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 152 | 15 151 30 | iserex | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| 153 | 8 152 | mpbid | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 154 | 12 13 126 149 153 | isumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ 𝐵 ∈ ℂ ) |
| 155 | 154 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ 𝐵 ∈ ℂ ) |
| 156 | 155 | abscld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ∈ ℝ ) |
| 157 | 155 | absge0d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ≤ ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ) |
| 158 | fimaxre2 | ⊢ ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ∈ Fin ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) | |
| 159 | 115 119 158 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) |
| 160 | 115 142 159 141 | suprubd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ≤ sup ( 𝑇 , ℝ , < ) ) |
| 161 | 148 156 147 157 160 | letrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ≤ sup ( 𝑇 , ℝ , < ) ) |
| 162 | 147 161 | ge0p1rpd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℝ+ ) |
| 163 | 93 162 | rpdivcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ∈ ℝ+ ) |
| 164 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑚 ) ) | |
| 165 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) | |
| 166 | fvex | ⊢ ( 𝐾 ‘ 𝑚 ) ∈ V | |
| 167 | 164 165 166 | fvmpt | ⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑚 ) = ( 𝐾 ‘ 𝑚 ) ) |
| 168 | 167 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑚 ) = ( 𝐾 ‘ 𝑚 ) ) |
| 169 | nn0ex | ⊢ ℕ0 ∈ V | |
| 170 | 169 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ∈ V |
| 171 | 170 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ∈ V ) |
| 172 | elnn0uz | ⊢ ( 𝑗 ∈ ℕ0 ↔ 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 173 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑗 ) ) | |
| 174 | fvex | ⊢ ( 𝐾 ‘ 𝑗 ) ∈ V | |
| 175 | 173 165 174 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐾 ‘ 𝑗 ) ) |
| 176 | 175 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐾 ‘ 𝑗 ) ) |
| 177 | 172 176 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐾 ‘ 𝑗 ) ) |
| 178 | 16 177 | seqfeq | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ) = seq 0 ( + , 𝐾 ) ) |
| 179 | 178 7 | eqeltrd | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 180 | 176 2 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
| 181 | 180 18 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) ∈ ℝ ) |
| 182 | 181 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 183 | 15 16 171 179 182 | serf0 | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ⇝ 0 ) |
| 184 | 183 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ⇝ 0 ) |
| 185 | 15 88 163 168 184 | climi0 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑡 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
| 186 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → 𝜑 ) | |
| 187 | eluznn0 | ⊢ ( ( 𝑡 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → 𝑚 ∈ ℕ0 ) | |
| 188 | 187 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → 𝑚 ∈ ℕ0 ) |
| 189 | 19 22 | absidd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( 𝐾 ‘ 𝑗 ) ) |
| 190 | 189 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( 𝐾 ‘ 𝑗 ) ) |
| 191 | fveq2 | ⊢ ( 𝑗 = 𝑚 → ( 𝐾 ‘ 𝑗 ) = ( 𝐾 ‘ 𝑚 ) ) | |
| 192 | 191 | fveq2d | ⊢ ( 𝑗 = 𝑚 → ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) ) |
| 193 | 192 191 | eqeq12d | ⊢ ( 𝑗 = 𝑚 → ( ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( 𝐾 ‘ 𝑗 ) ↔ ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) = ( 𝐾 ‘ 𝑚 ) ) ) |
| 194 | 193 | rspccva | ⊢ ( ( ∀ 𝑗 ∈ ℕ0 ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( 𝐾 ‘ 𝑗 ) ∧ 𝑚 ∈ ℕ0 ) → ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) = ( 𝐾 ‘ 𝑚 ) ) |
| 195 | 190 194 | sylan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) = ( 𝐾 ‘ 𝑚 ) ) |
| 196 | 186 188 195 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) = ( 𝐾 ‘ 𝑚 ) ) |
| 197 | 196 | breq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → ( ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 198 | 197 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 199 | 164 | breq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 200 | 199 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
| 201 | 198 200 | bitr4di | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 202 | 1 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
| 203 | 2 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
| 204 | 3 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 205 | 4 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 206 | 5 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 207 | 6 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 208 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) |
| 209 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 210 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → 𝐸 ∈ ℝ+ ) |
| 211 | 200 | anbi2i | ⊢ ( ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ↔ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 212 | 211 | anbi2i | ⊢ ( ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ↔ ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
| 213 | 212 | biimpi | ⊢ ( ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
| 214 | 213 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
| 215 | 115 142 159 | 3jca | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) ) |
| 216 | 161 215 | jca | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 0 ≤ sup ( 𝑇 , ℝ , < ) ∧ ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) ) ) |
| 217 | 216 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → ( 0 ≤ sup ( 𝑇 , ℝ , < ) ∧ ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) ) ) |
| 218 | 202 203 204 205 206 207 208 209 210 10 11 214 217 | mertenslem1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) |
| 219 | 218 | expr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 220 | 201 219 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 221 | 220 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ∃ 𝑡 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 222 | 185 221 | mpd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) |
| 223 | 222 | ex | ⊢ ( 𝜑 → ( 𝜓 → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 224 | 11 223 | biimtrrid | ⊢ ( 𝜑 → ( ( 𝑠 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 225 | 224 | expdimp | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 226 | 87 225 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 227 | 226 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 228 | 28 227 | mpd | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) |