This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climi.1 | |- Z = ( ZZ>= ` M ) |
|
| climi.2 | |- ( ph -> M e. ZZ ) |
||
| climi.3 | |- ( ph -> C e. RR+ ) |
||
| climi.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
||
| climi0.5 | |- ( ph -> F ~~> 0 ) |
||
| Assertion | climi0 | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climi.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climi.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climi.3 | |- ( ph -> C e. RR+ ) |
|
| 4 | climi.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
|
| 5 | climi0.5 | |- ( ph -> F ~~> 0 ) |
|
| 6 | 1 2 3 4 5 | climi | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - 0 ) ) < C ) ) |
| 7 | subid1 | |- ( B e. CC -> ( B - 0 ) = B ) |
|
| 8 | 7 | fveq2d | |- ( B e. CC -> ( abs ` ( B - 0 ) ) = ( abs ` B ) ) |
| 9 | 8 | breq1d | |- ( B e. CC -> ( ( abs ` ( B - 0 ) ) < C <-> ( abs ` B ) < C ) ) |
| 10 | 9 | biimpa | |- ( ( B e. CC /\ ( abs ` ( B - 0 ) ) < C ) -> ( abs ` B ) < C ) |
| 11 | 10 | ralimi | |- ( A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - 0 ) ) < C ) -> A. k e. ( ZZ>= ` j ) ( abs ` B ) < C ) |
| 12 | 11 | reximi | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - 0 ) ) < C ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < C ) |
| 13 | 6 12 | syl | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < C ) |