This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| Assertion | logcn | |- ( log |` D ) e. ( D -cn-> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | logf1o | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
|
| 3 | f1of | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
|
| 4 | 2 3 | ax-mp | |- log : ( CC \ { 0 } ) --> ran log |
| 5 | 1 | logdmss | |- D C_ ( CC \ { 0 } ) |
| 6 | fssres | |- ( ( log : ( CC \ { 0 } ) --> ran log /\ D C_ ( CC \ { 0 } ) ) -> ( log |` D ) : D --> ran log ) |
|
| 7 | 4 5 6 | mp2an | |- ( log |` D ) : D --> ran log |
| 8 | ffn | |- ( ( log |` D ) : D --> ran log -> ( log |` D ) Fn D ) |
|
| 9 | 7 8 | ax-mp | |- ( log |` D ) Fn D |
| 10 | dffn5 | |- ( ( log |` D ) Fn D <-> ( log |` D ) = ( x e. D |-> ( ( log |` D ) ` x ) ) ) |
|
| 11 | 9 10 | mpbi | |- ( log |` D ) = ( x e. D |-> ( ( log |` D ) ` x ) ) |
| 12 | fvres | |- ( x e. D -> ( ( log |` D ) ` x ) = ( log ` x ) ) |
|
| 13 | 1 | ellogdm | |- ( x e. D <-> ( x e. CC /\ ( x e. RR -> x e. RR+ ) ) ) |
| 14 | 13 | simplbi | |- ( x e. D -> x e. CC ) |
| 15 | 1 | logdmn0 | |- ( x e. D -> x =/= 0 ) |
| 16 | 14 15 | logcld | |- ( x e. D -> ( log ` x ) e. CC ) |
| 17 | 16 | replimd | |- ( x e. D -> ( log ` x ) = ( ( Re ` ( log ` x ) ) + ( _i x. ( Im ` ( log ` x ) ) ) ) ) |
| 18 | relog | |- ( ( x e. CC /\ x =/= 0 ) -> ( Re ` ( log ` x ) ) = ( log ` ( abs ` x ) ) ) |
|
| 19 | 14 15 18 | syl2anc | |- ( x e. D -> ( Re ` ( log ` x ) ) = ( log ` ( abs ` x ) ) ) |
| 20 | 14 15 | absrpcld | |- ( x e. D -> ( abs ` x ) e. RR+ ) |
| 21 | 20 | fvresd | |- ( x e. D -> ( ( log |` RR+ ) ` ( abs ` x ) ) = ( log ` ( abs ` x ) ) ) |
| 22 | 19 21 | eqtr4d | |- ( x e. D -> ( Re ` ( log ` x ) ) = ( ( log |` RR+ ) ` ( abs ` x ) ) ) |
| 23 | 22 | oveq1d | |- ( x e. D -> ( ( Re ` ( log ` x ) ) + ( _i x. ( Im ` ( log ` x ) ) ) ) = ( ( ( log |` RR+ ) ` ( abs ` x ) ) + ( _i x. ( Im ` ( log ` x ) ) ) ) ) |
| 24 | 12 17 23 | 3eqtrd | |- ( x e. D -> ( ( log |` D ) ` x ) = ( ( ( log |` RR+ ) ` ( abs ` x ) ) + ( _i x. ( Im ` ( log ` x ) ) ) ) ) |
| 25 | 24 | mpteq2ia | |- ( x e. D |-> ( ( log |` D ) ` x ) ) = ( x e. D |-> ( ( ( log |` RR+ ) ` ( abs ` x ) ) + ( _i x. ( Im ` ( log ` x ) ) ) ) ) |
| 26 | 11 25 | eqtri | |- ( log |` D ) = ( x e. D |-> ( ( ( log |` RR+ ) ` ( abs ` x ) ) + ( _i x. ( Im ` ( log ` x ) ) ) ) ) |
| 27 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 28 | 27 | addcn | |- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 29 | 28 | a1i | |- ( T. -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 30 | 27 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 31 | 14 | ssriv | |- D C_ CC |
| 32 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ D C_ CC ) -> ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) ) |
|
| 33 | 30 31 32 | mp2an | |- ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) |
| 34 | 33 | a1i | |- ( T. -> ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) ) |
| 35 | absf | |- abs : CC --> RR |
|
| 36 | fssres | |- ( ( abs : CC --> RR /\ D C_ CC ) -> ( abs |` D ) : D --> RR ) |
|
| 37 | 35 31 36 | mp2an | |- ( abs |` D ) : D --> RR |
| 38 | 37 | a1i | |- ( T. -> ( abs |` D ) : D --> RR ) |
| 39 | 38 | feqmptd | |- ( T. -> ( abs |` D ) = ( x e. D |-> ( ( abs |` D ) ` x ) ) ) |
| 40 | fvres | |- ( x e. D -> ( ( abs |` D ) ` x ) = ( abs ` x ) ) |
|
| 41 | 40 | mpteq2ia | |- ( x e. D |-> ( ( abs |` D ) ` x ) ) = ( x e. D |-> ( abs ` x ) ) |
| 42 | 39 41 | eqtrdi | |- ( T. -> ( abs |` D ) = ( x e. D |-> ( abs ` x ) ) ) |
| 43 | ffn | |- ( ( abs |` D ) : D --> RR -> ( abs |` D ) Fn D ) |
|
| 44 | 37 43 | ax-mp | |- ( abs |` D ) Fn D |
| 45 | 40 20 | eqeltrd | |- ( x e. D -> ( ( abs |` D ) ` x ) e. RR+ ) |
| 46 | 45 | rgen | |- A. x e. D ( ( abs |` D ) ` x ) e. RR+ |
| 47 | ffnfv | |- ( ( abs |` D ) : D --> RR+ <-> ( ( abs |` D ) Fn D /\ A. x e. D ( ( abs |` D ) ` x ) e. RR+ ) ) |
|
| 48 | 44 46 47 | mpbir2an | |- ( abs |` D ) : D --> RR+ |
| 49 | rpssre | |- RR+ C_ RR |
|
| 50 | ax-resscn | |- RR C_ CC |
|
| 51 | 49 50 | sstri | |- RR+ C_ CC |
| 52 | abscncf | |- abs e. ( CC -cn-> RR ) |
|
| 53 | rescncf | |- ( D C_ CC -> ( abs e. ( CC -cn-> RR ) -> ( abs |` D ) e. ( D -cn-> RR ) ) ) |
|
| 54 | 31 52 53 | mp2 | |- ( abs |` D ) e. ( D -cn-> RR ) |
| 55 | cncfcdm | |- ( ( RR+ C_ CC /\ ( abs |` D ) e. ( D -cn-> RR ) ) -> ( ( abs |` D ) e. ( D -cn-> RR+ ) <-> ( abs |` D ) : D --> RR+ ) ) |
|
| 56 | 51 54 55 | mp2an | |- ( ( abs |` D ) e. ( D -cn-> RR+ ) <-> ( abs |` D ) : D --> RR+ ) |
| 57 | 48 56 | mpbir | |- ( abs |` D ) e. ( D -cn-> RR+ ) |
| 58 | 42 57 | eqeltrrdi | |- ( T. -> ( x e. D |-> ( abs ` x ) ) e. ( D -cn-> RR+ ) ) |
| 59 | eqid | |- ( ( TopOpen ` CCfld ) |`t D ) = ( ( TopOpen ` CCfld ) |`t D ) |
|
| 60 | eqid | |- ( ( TopOpen ` CCfld ) |`t RR+ ) = ( ( TopOpen ` CCfld ) |`t RR+ ) |
|
| 61 | 27 59 60 | cncfcn | |- ( ( D C_ CC /\ RR+ C_ CC ) -> ( D -cn-> RR+ ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( ( TopOpen ` CCfld ) |`t RR+ ) ) ) |
| 62 | 31 51 61 | mp2an | |- ( D -cn-> RR+ ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( ( TopOpen ` CCfld ) |`t RR+ ) ) |
| 63 | 58 62 | eleqtrdi | |- ( T. -> ( x e. D |-> ( abs ` x ) ) e. ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( ( TopOpen ` CCfld ) |`t RR+ ) ) ) |
| 64 | ssid | |- CC C_ CC |
|
| 65 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR+ -cn-> RR ) C_ ( RR+ -cn-> CC ) ) |
|
| 66 | 50 64 65 | mp2an | |- ( RR+ -cn-> RR ) C_ ( RR+ -cn-> CC ) |
| 67 | relogcn | |- ( log |` RR+ ) e. ( RR+ -cn-> RR ) |
|
| 68 | 66 67 | sselii | |- ( log |` RR+ ) e. ( RR+ -cn-> CC ) |
| 69 | 68 | a1i | |- ( T. -> ( log |` RR+ ) e. ( RR+ -cn-> CC ) ) |
| 70 | 30 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 71 | 27 60 70 | cncfcn | |- ( ( RR+ C_ CC /\ CC C_ CC ) -> ( RR+ -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t RR+ ) Cn ( TopOpen ` CCfld ) ) ) |
| 72 | 51 64 71 | mp2an | |- ( RR+ -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t RR+ ) Cn ( TopOpen ` CCfld ) ) |
| 73 | 69 72 | eleqtrdi | |- ( T. -> ( log |` RR+ ) e. ( ( ( TopOpen ` CCfld ) |`t RR+ ) Cn ( TopOpen ` CCfld ) ) ) |
| 74 | 34 63 73 | cnmpt11f | |- ( T. -> ( x e. D |-> ( ( log |` RR+ ) ` ( abs ` x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
| 75 | 27 59 70 | cncfcn | |- ( ( D C_ CC /\ CC C_ CC ) -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
| 76 | 31 64 75 | mp2an | |- ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) |
| 77 | 74 76 | eleqtrrdi | |- ( T. -> ( x e. D |-> ( ( log |` RR+ ) ` ( abs ` x ) ) ) e. ( D -cn-> CC ) ) |
| 78 | 16 | imcld | |- ( x e. D -> ( Im ` ( log ` x ) ) e. RR ) |
| 79 | 78 | recnd | |- ( x e. D -> ( Im ` ( log ` x ) ) e. CC ) |
| 80 | 79 | adantl | |- ( ( T. /\ x e. D ) -> ( Im ` ( log ` x ) ) e. CC ) |
| 81 | eqidd | |- ( T. -> ( x e. D |-> ( Im ` ( log ` x ) ) ) = ( x e. D |-> ( Im ` ( log ` x ) ) ) ) |
|
| 82 | eqidd | |- ( T. -> ( y e. CC |-> ( _i x. y ) ) = ( y e. CC |-> ( _i x. y ) ) ) |
|
| 83 | oveq2 | |- ( y = ( Im ` ( log ` x ) ) -> ( _i x. y ) = ( _i x. ( Im ` ( log ` x ) ) ) ) |
|
| 84 | 80 81 82 83 | fmptco | |- ( T. -> ( ( y e. CC |-> ( _i x. y ) ) o. ( x e. D |-> ( Im ` ( log ` x ) ) ) ) = ( x e. D |-> ( _i x. ( Im ` ( log ` x ) ) ) ) ) |
| 85 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( D -cn-> RR ) C_ ( D -cn-> CC ) ) |
|
| 86 | 50 64 85 | mp2an | |- ( D -cn-> RR ) C_ ( D -cn-> CC ) |
| 87 | 1 | logcnlem5 | |- ( x e. D |-> ( Im ` ( log ` x ) ) ) e. ( D -cn-> RR ) |
| 88 | 86 87 | sselii | |- ( x e. D |-> ( Im ` ( log ` x ) ) ) e. ( D -cn-> CC ) |
| 89 | 88 | a1i | |- ( T. -> ( x e. D |-> ( Im ` ( log ` x ) ) ) e. ( D -cn-> CC ) ) |
| 90 | ax-icn | |- _i e. CC |
|
| 91 | eqid | |- ( y e. CC |-> ( _i x. y ) ) = ( y e. CC |-> ( _i x. y ) ) |
|
| 92 | 91 | mulc1cncf | |- ( _i e. CC -> ( y e. CC |-> ( _i x. y ) ) e. ( CC -cn-> CC ) ) |
| 93 | 90 92 | mp1i | |- ( T. -> ( y e. CC |-> ( _i x. y ) ) e. ( CC -cn-> CC ) ) |
| 94 | 89 93 | cncfco | |- ( T. -> ( ( y e. CC |-> ( _i x. y ) ) o. ( x e. D |-> ( Im ` ( log ` x ) ) ) ) e. ( D -cn-> CC ) ) |
| 95 | 84 94 | eqeltrrd | |- ( T. -> ( x e. D |-> ( _i x. ( Im ` ( log ` x ) ) ) ) e. ( D -cn-> CC ) ) |
| 96 | 27 29 77 95 | cncfmpt2f | |- ( T. -> ( x e. D |-> ( ( ( log |` RR+ ) ` ( abs ` x ) ) + ( _i x. ( Im ` ( log ` x ) ) ) ) ) e. ( D -cn-> CC ) ) |
| 97 | 96 | mptru | |- ( x e. D |-> ( ( ( log |` RR+ ) ` ( abs ` x ) ) + ( _i x. ( Im ` ( log ` x ) ) ) ) ) e. ( D -cn-> CC ) |
| 98 | 26 97 | eqeltri | |- ( log |` D ) e. ( D -cn-> CC ) |