This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013) (Proof shortened by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffn5 | |- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel | |- ( F Fn A -> Rel F ) |
|
| 2 | dfrel4v | |- ( Rel F <-> F = { <. x , y >. | x F y } ) |
|
| 3 | 1 2 | sylib | |- ( F Fn A -> F = { <. x , y >. | x F y } ) |
| 4 | fnbr | |- ( ( F Fn A /\ x F y ) -> x e. A ) |
|
| 5 | 4 | ex | |- ( F Fn A -> ( x F y -> x e. A ) ) |
| 6 | 5 | pm4.71rd | |- ( F Fn A -> ( x F y <-> ( x e. A /\ x F y ) ) ) |
| 7 | eqcom | |- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
|
| 8 | fnbrfvb | |- ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = y <-> x F y ) ) |
|
| 9 | 7 8 | bitrid | |- ( ( F Fn A /\ x e. A ) -> ( y = ( F ` x ) <-> x F y ) ) |
| 10 | 9 | pm5.32da | |- ( F Fn A -> ( ( x e. A /\ y = ( F ` x ) ) <-> ( x e. A /\ x F y ) ) ) |
| 11 | 6 10 | bitr4d | |- ( F Fn A -> ( x F y <-> ( x e. A /\ y = ( F ` x ) ) ) ) |
| 12 | 11 | opabbidv | |- ( F Fn A -> { <. x , y >. | x F y } = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
| 13 | 3 12 | eqtrd | |- ( F Fn A -> F = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
| 14 | df-mpt | |- ( x e. A |-> ( F ` x ) ) = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } |
|
| 15 | 13 14 | eqtr4di | |- ( F Fn A -> F = ( x e. A |-> ( F ` x ) ) ) |
| 16 | fvex | |- ( F ` x ) e. _V |
|
| 17 | eqid | |- ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( F ` x ) ) |
|
| 18 | 16 17 | fnmpti | |- ( x e. A |-> ( F ` x ) ) Fn A |
| 19 | fneq1 | |- ( F = ( x e. A |-> ( F ` x ) ) -> ( F Fn A <-> ( x e. A |-> ( F ` x ) ) Fn A ) ) |
|
| 20 | 18 19 | mpbiri | |- ( F = ( x e. A |-> ( F ` x ) ) -> F Fn A ) |
| 21 | 15 20 | impbii | |- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) |