This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| Assertion | ellogdm | |- ( A e. D <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | 1 | eleq2i | |- ( A e. D <-> A e. ( CC \ ( -oo (,] 0 ) ) ) |
| 3 | eldif | |- ( A e. ( CC \ ( -oo (,] 0 ) ) <-> ( A e. CC /\ -. A e. ( -oo (,] 0 ) ) ) |
|
| 4 | mnfxr | |- -oo e. RR* |
|
| 5 | 0re | |- 0 e. RR |
|
| 6 | elioc2 | |- ( ( -oo e. RR* /\ 0 e. RR ) -> ( A e. ( -oo (,] 0 ) <-> ( A e. RR /\ -oo < A /\ A <_ 0 ) ) ) |
|
| 7 | 4 5 6 | mp2an | |- ( A e. ( -oo (,] 0 ) <-> ( A e. RR /\ -oo < A /\ A <_ 0 ) ) |
| 8 | df-3an | |- ( ( A e. RR /\ -oo < A /\ A <_ 0 ) <-> ( ( A e. RR /\ -oo < A ) /\ A <_ 0 ) ) |
|
| 9 | mnflt | |- ( A e. RR -> -oo < A ) |
|
| 10 | 9 | pm4.71i | |- ( A e. RR <-> ( A e. RR /\ -oo < A ) ) |
| 11 | 10 | anbi1i | |- ( ( A e. RR /\ A <_ 0 ) <-> ( ( A e. RR /\ -oo < A ) /\ A <_ 0 ) ) |
| 12 | lenlt | |- ( ( A e. RR /\ 0 e. RR ) -> ( A <_ 0 <-> -. 0 < A ) ) |
|
| 13 | 5 12 | mpan2 | |- ( A e. RR -> ( A <_ 0 <-> -. 0 < A ) ) |
| 14 | elrp | |- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
|
| 15 | 14 | baib | |- ( A e. RR -> ( A e. RR+ <-> 0 < A ) ) |
| 16 | 15 | notbid | |- ( A e. RR -> ( -. A e. RR+ <-> -. 0 < A ) ) |
| 17 | 13 16 | bitr4d | |- ( A e. RR -> ( A <_ 0 <-> -. A e. RR+ ) ) |
| 18 | 17 | pm5.32i | |- ( ( A e. RR /\ A <_ 0 ) <-> ( A e. RR /\ -. A e. RR+ ) ) |
| 19 | 11 18 | bitr3i | |- ( ( ( A e. RR /\ -oo < A ) /\ A <_ 0 ) <-> ( A e. RR /\ -. A e. RR+ ) ) |
| 20 | 7 8 19 | 3bitri | |- ( A e. ( -oo (,] 0 ) <-> ( A e. RR /\ -. A e. RR+ ) ) |
| 21 | 20 | notbii | |- ( -. A e. ( -oo (,] 0 ) <-> -. ( A e. RR /\ -. A e. RR+ ) ) |
| 22 | iman | |- ( ( A e. RR -> A e. RR+ ) <-> -. ( A e. RR /\ -. A e. RR+ ) ) |
|
| 23 | 21 22 | bitr4i | |- ( -. A e. ( -oo (,] 0 ) <-> ( A e. RR -> A e. RR+ ) ) |
| 24 | 23 | anbi2i | |- ( ( A e. CC /\ -. A e. ( -oo (,] 0 ) ) <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) |
| 25 | 2 3 24 | 3bitri | |- ( A e. D <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) |