This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptid.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| cnmpt11.a | |- ( ph -> ( x e. X |-> A ) e. ( J Cn K ) ) |
||
| cnmpt11f.f | |- ( ph -> F e. ( K Cn L ) ) |
||
| Assertion | cnmpt11f | |- ( ph -> ( x e. X |-> ( F ` A ) ) e. ( J Cn L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | cnmpt11.a | |- ( ph -> ( x e. X |-> A ) e. ( J Cn K ) ) |
|
| 3 | cnmpt11f.f | |- ( ph -> F e. ( K Cn L ) ) |
|
| 4 | cntop2 | |- ( ( x e. X |-> A ) e. ( J Cn K ) -> K e. Top ) |
|
| 5 | 2 4 | syl | |- ( ph -> K e. Top ) |
| 6 | toptopon2 | |- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
|
| 7 | 5 6 | sylib | |- ( ph -> K e. ( TopOn ` U. K ) ) |
| 8 | eqid | |- U. K = U. K |
|
| 9 | eqid | |- U. L = U. L |
|
| 10 | 8 9 | cnf | |- ( F e. ( K Cn L ) -> F : U. K --> U. L ) |
| 11 | 3 10 | syl | |- ( ph -> F : U. K --> U. L ) |
| 12 | 11 | feqmptd | |- ( ph -> F = ( y e. U. K |-> ( F ` y ) ) ) |
| 13 | 12 3 | eqeltrrd | |- ( ph -> ( y e. U. K |-> ( F ` y ) ) e. ( K Cn L ) ) |
| 14 | fveq2 | |- ( y = A -> ( F ` y ) = ( F ` A ) ) |
|
| 15 | 1 2 7 13 14 | cnmpt11 | |- ( ph -> ( x e. X |-> ( F ` A ) ) e. ( J Cn L ) ) |