This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mulc1cncf.1 | |- F = ( x e. CC |-> ( A x. x ) ) |
|
| Assertion | mulc1cncf | |- ( A e. CC -> F e. ( CC -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulc1cncf.1 | |- F = ( x e. CC |-> ( A x. x ) ) |
|
| 2 | mulcl | |- ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) |
|
| 3 | 2 1 | fmptd | |- ( A e. CC -> F : CC --> CC ) |
| 4 | simprr | |- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> z e. RR+ ) |
|
| 5 | simpl | |- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> A e. CC ) |
|
| 6 | simprl | |- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> y e. CC ) |
|
| 7 | mulcn2 | |- ( ( z e. RR+ /\ A e. CC /\ y e. CC ) -> E. t e. RR+ E. w e. RR+ A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) ) |
|
| 8 | 4 5 6 7 | syl3anc | |- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> E. t e. RR+ E. w e. RR+ A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) ) |
| 9 | fvoveq1 | |- ( v = A -> ( abs ` ( v - A ) ) = ( abs ` ( A - A ) ) ) |
|
| 10 | 9 | breq1d | |- ( v = A -> ( ( abs ` ( v - A ) ) < t <-> ( abs ` ( A - A ) ) < t ) ) |
| 11 | 10 | anbi1d | |- ( v = A -> ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) <-> ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) ) ) |
| 12 | oveq1 | |- ( v = A -> ( v x. u ) = ( A x. u ) ) |
|
| 13 | 12 | fvoveq1d | |- ( v = A -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) = ( abs ` ( ( A x. u ) - ( A x. y ) ) ) ) |
| 14 | 13 | breq1d | |- ( v = A -> ( ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z <-> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) |
| 15 | 11 14 | imbi12d | |- ( v = A -> ( ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) <-> ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
| 16 | 15 | ralbidv | |- ( v = A -> ( A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) <-> A. u e. CC ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
| 17 | 16 | rspcv | |- ( A e. CC -> ( A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> A. u e. CC ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
| 18 | 17 | ad2antrr | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( t e. RR+ /\ w e. RR+ ) ) -> ( A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> A. u e. CC ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
| 19 | subid | |- ( A e. CC -> ( A - A ) = 0 ) |
|
| 20 | 19 | ad2antrr | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( A - A ) = 0 ) |
| 21 | 20 | abs00bd | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( abs ` ( A - A ) ) = 0 ) |
| 22 | simprll | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> t e. RR+ ) |
|
| 23 | 22 | rpgt0d | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> 0 < t ) |
| 24 | 21 23 | eqbrtrd | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( abs ` ( A - A ) ) < t ) |
| 25 | 24 | biantrurd | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( ( abs ` ( u - y ) ) < w <-> ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) ) ) |
| 26 | simprr | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> u e. CC ) |
|
| 27 | oveq2 | |- ( x = u -> ( A x. x ) = ( A x. u ) ) |
|
| 28 | ovex | |- ( A x. u ) e. _V |
|
| 29 | 27 1 28 | fvmpt | |- ( u e. CC -> ( F ` u ) = ( A x. u ) ) |
| 30 | 26 29 | syl | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( F ` u ) = ( A x. u ) ) |
| 31 | simplrl | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> y e. CC ) |
|
| 32 | oveq2 | |- ( x = y -> ( A x. x ) = ( A x. y ) ) |
|
| 33 | ovex | |- ( A x. y ) e. _V |
|
| 34 | 32 1 33 | fvmpt | |- ( y e. CC -> ( F ` y ) = ( A x. y ) ) |
| 35 | 31 34 | syl | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( F ` y ) = ( A x. y ) ) |
| 36 | 30 35 | oveq12d | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( ( F ` u ) - ( F ` y ) ) = ( ( A x. u ) - ( A x. y ) ) ) |
| 37 | 36 | fveq2d | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) = ( abs ` ( ( A x. u ) - ( A x. y ) ) ) ) |
| 38 | 37 | breq1d | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z <-> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) |
| 39 | 25 38 | imbi12d | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) <-> ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
| 40 | 39 | anassrs | |- ( ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( t e. RR+ /\ w e. RR+ ) ) /\ u e. CC ) -> ( ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) <-> ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
| 41 | 40 | ralbidva | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( t e. RR+ /\ w e. RR+ ) ) -> ( A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) <-> A. u e. CC ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
| 42 | 18 41 | sylibrd | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( t e. RR+ /\ w e. RR+ ) ) -> ( A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
| 43 | 42 | anassrs | |- ( ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ t e. RR+ ) /\ w e. RR+ ) -> ( A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
| 44 | 43 | reximdva | |- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ t e. RR+ ) -> ( E. w e. RR+ A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
| 45 | 44 | rexlimdva | |- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> ( E. t e. RR+ E. w e. RR+ A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
| 46 | 8 45 | mpd | |- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) |
| 47 | 46 | ralrimivva | |- ( A e. CC -> A. y e. CC A. z e. RR+ E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) |
| 48 | ssid | |- CC C_ CC |
|
| 49 | elcncf2 | |- ( ( CC C_ CC /\ CC C_ CC ) -> ( F e. ( CC -cn-> CC ) <-> ( F : CC --> CC /\ A. y e. CC A. z e. RR+ E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) ) |
|
| 50 | 48 48 49 | mp2an | |- ( F e. ( CC -cn-> CC ) <-> ( F : CC --> CC /\ A. y e. CC A. z e. RR+ E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
| 51 | 3 47 50 | sylanbrc | |- ( A e. CC -> F e. ( CC -cn-> CC ) ) |