This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real part of a logarithm. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relog | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 2 | 1 | recld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. RR ) |
| 3 | relogef | |- ( ( Re ` ( log ` A ) ) e. RR -> ( log ` ( exp ` ( Re ` ( log ` A ) ) ) ) = ( Re ` ( log ` A ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( exp ` ( Re ` ( log ` A ) ) ) ) = ( Re ` ( log ` A ) ) ) |
| 5 | absef | |- ( ( log ` A ) e. CC -> ( abs ` ( exp ` ( log ` A ) ) ) = ( exp ` ( Re ` ( log ` A ) ) ) ) |
|
| 6 | 1 5 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( exp ` ( log ` A ) ) ) = ( exp ` ( Re ` ( log ` A ) ) ) ) |
| 7 | eflog | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
|
| 8 | 7 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( exp ` ( log ` A ) ) ) = ( abs ` A ) ) |
| 9 | 6 8 | eqtr3d | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) = ( abs ` A ) ) |
| 10 | 9 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( exp ` ( Re ` ( log ` A ) ) ) ) = ( log ` ( abs ` A ) ) ) |
| 11 | 4 10 | eqtr3d | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |