This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exercise: the integral of x |-> sin a x on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsincmulx.a | |- ( ph -> A e. CC ) |
|
| itgsincmulx.an0 | |- ( ph -> A =/= 0 ) |
||
| itgsincmulx.b | |- ( ph -> B e. RR ) |
||
| itgsincmulx.c | |- ( ph -> C e. RR ) |
||
| itgsincmulx.blec | |- ( ph -> B <_ C ) |
||
| Assertion | itgsincmulx | |- ( ph -> S. ( B (,) C ) ( sin ` ( A x. x ) ) _d x = ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsincmulx.a | |- ( ph -> A e. CC ) |
|
| 2 | itgsincmulx.an0 | |- ( ph -> A =/= 0 ) |
|
| 3 | itgsincmulx.b | |- ( ph -> B e. RR ) |
|
| 4 | itgsincmulx.c | |- ( ph -> C e. RR ) |
|
| 5 | itgsincmulx.blec | |- ( ph -> B <_ C ) |
|
| 6 | eqid | |- ( y e. CC |-> ( -u ( cos ` ( A x. y ) ) / A ) ) = ( y e. CC |-> ( -u ( cos ` ( A x. y ) ) / A ) ) |
|
| 7 | 1 | adantr | |- ( ( ph /\ y e. CC ) -> A e. CC ) |
| 8 | simpr | |- ( ( ph /\ y e. CC ) -> y e. CC ) |
|
| 9 | 7 8 | mulcld | |- ( ( ph /\ y e. CC ) -> ( A x. y ) e. CC ) |
| 10 | 9 | coscld | |- ( ( ph /\ y e. CC ) -> ( cos ` ( A x. y ) ) e. CC ) |
| 11 | 10 | negcld | |- ( ( ph /\ y e. CC ) -> -u ( cos ` ( A x. y ) ) e. CC ) |
| 12 | 2 | adantr | |- ( ( ph /\ y e. CC ) -> A =/= 0 ) |
| 13 | 11 7 12 | divcld | |- ( ( ph /\ y e. CC ) -> ( -u ( cos ` ( A x. y ) ) / A ) e. CC ) |
| 14 | cnelprrecn | |- CC e. { RR , CC } |
|
| 15 | 14 | a1i | |- ( ph -> CC e. { RR , CC } ) |
| 16 | 9 | sincld | |- ( ( ph /\ y e. CC ) -> ( sin ` ( A x. y ) ) e. CC ) |
| 17 | 16 | negcld | |- ( ( ph /\ y e. CC ) -> -u ( sin ` ( A x. y ) ) e. CC ) |
| 18 | 7 17 | mulcld | |- ( ( ph /\ y e. CC ) -> ( A x. -u ( sin ` ( A x. y ) ) ) e. CC ) |
| 19 | 18 | negcld | |- ( ( ph /\ y e. CC ) -> -u ( A x. -u ( sin ` ( A x. y ) ) ) e. CC ) |
| 20 | dvcosax | |- ( A e. CC -> ( CC _D ( y e. CC |-> ( cos ` ( A x. y ) ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
|
| 21 | 1 20 | syl | |- ( ph -> ( CC _D ( y e. CC |-> ( cos ` ( A x. y ) ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
| 22 | 15 10 18 21 | dvmptneg | |- ( ph -> ( CC _D ( y e. CC |-> -u ( cos ` ( A x. y ) ) ) ) = ( y e. CC |-> -u ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
| 23 | 15 11 19 22 1 2 | dvmptdivc | |- ( ph -> ( CC _D ( y e. CC |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) = ( y e. CC |-> ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) ) ) |
| 24 | 18 7 12 | divnegd | |- ( ( ph /\ y e. CC ) -> -u ( ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) ) |
| 25 | 24 | eqcomd | |- ( ( ph /\ y e. CC ) -> ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = -u ( ( A x. -u ( sin ` ( A x. y ) ) ) / A ) ) |
| 26 | 17 7 12 | divcan3d | |- ( ( ph /\ y e. CC ) -> ( ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = -u ( sin ` ( A x. y ) ) ) |
| 27 | 26 | negeqd | |- ( ( ph /\ y e. CC ) -> -u ( ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = -u -u ( sin ` ( A x. y ) ) ) |
| 28 | 16 | negnegd | |- ( ( ph /\ y e. CC ) -> -u -u ( sin ` ( A x. y ) ) = ( sin ` ( A x. y ) ) ) |
| 29 | 25 27 28 | 3eqtrd | |- ( ( ph /\ y e. CC ) -> ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = ( sin ` ( A x. y ) ) ) |
| 30 | 29 | mpteq2dva | |- ( ph -> ( y e. CC |-> ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) ) = ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |
| 31 | 23 30 | eqtrd | |- ( ph -> ( CC _D ( y e. CC |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) = ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |
| 32 | 6 13 31 16 3 4 | dvmptresicc | |- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) = ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ) |
| 33 | 32 | fveq1d | |- ( ph -> ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) = ( ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ` x ) ) |
| 34 | 33 | adantr | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) = ( ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ` x ) ) |
| 35 | eqidd | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) = ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ) |
|
| 36 | oveq2 | |- ( y = x -> ( A x. y ) = ( A x. x ) ) |
|
| 37 | 36 | fveq2d | |- ( y = x -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. x ) ) ) |
| 38 | 37 | adantl | |- ( ( ( ph /\ x e. ( B (,) C ) ) /\ y = x ) -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. x ) ) ) |
| 39 | simpr | |- ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( B (,) C ) ) |
|
| 40 | 1 | adantr | |- ( ( ph /\ x e. ( B (,) C ) ) -> A e. CC ) |
| 41 | ioosscn | |- ( B (,) C ) C_ CC |
|
| 42 | 41 39 | sselid | |- ( ( ph /\ x e. ( B (,) C ) ) -> x e. CC ) |
| 43 | 40 42 | mulcld | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( A x. x ) e. CC ) |
| 44 | 43 | sincld | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( sin ` ( A x. x ) ) e. CC ) |
| 45 | 35 38 39 44 | fvmptd | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ` x ) = ( sin ` ( A x. x ) ) ) |
| 46 | 34 45 | eqtr2d | |- ( ( ph /\ x e. ( B (,) C ) ) -> ( sin ` ( A x. x ) ) = ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) ) |
| 47 | 46 | itgeq2dv | |- ( ph -> S. ( B (,) C ) ( sin ` ( A x. x ) ) _d x = S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) _d x ) |
| 48 | sincn | |- sin e. ( CC -cn-> CC ) |
|
| 49 | 48 | a1i | |- ( ph -> sin e. ( CC -cn-> CC ) ) |
| 50 | 41 | a1i | |- ( ph -> ( B (,) C ) C_ CC ) |
| 51 | ssid | |- CC C_ CC |
|
| 52 | 51 | a1i | |- ( ph -> CC C_ CC ) |
| 53 | 50 1 52 | constcncfg | |- ( ph -> ( y e. ( B (,) C ) |-> A ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 54 | 50 52 | idcncfg | |- ( ph -> ( y e. ( B (,) C ) |-> y ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 55 | 53 54 | mulcncf | |- ( ph -> ( y e. ( B (,) C ) |-> ( A x. y ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 56 | 49 55 | cncfmpt1f | |- ( ph -> ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 57 | 32 56 | eqeltrd | |- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
| 58 | ioossicc | |- ( B (,) C ) C_ ( B [,] C ) |
|
| 59 | 58 | a1i | |- ( ph -> ( B (,) C ) C_ ( B [,] C ) ) |
| 60 | ioombl | |- ( B (,) C ) e. dom vol |
|
| 61 | 60 | a1i | |- ( ph -> ( B (,) C ) e. dom vol ) |
| 62 | 1 | adantr | |- ( ( ph /\ y e. ( B [,] C ) ) -> A e. CC ) |
| 63 | 3 4 | iccssred | |- ( ph -> ( B [,] C ) C_ RR ) |
| 64 | ax-resscn | |- RR C_ CC |
|
| 65 | 63 64 | sstrdi | |- ( ph -> ( B [,] C ) C_ CC ) |
| 66 | 65 | sselda | |- ( ( ph /\ y e. ( B [,] C ) ) -> y e. CC ) |
| 67 | 62 66 | mulcld | |- ( ( ph /\ y e. ( B [,] C ) ) -> ( A x. y ) e. CC ) |
| 68 | 67 | sincld | |- ( ( ph /\ y e. ( B [,] C ) ) -> ( sin ` ( A x. y ) ) e. CC ) |
| 69 | 65 1 52 | constcncfg | |- ( ph -> ( y e. ( B [,] C ) |-> A ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 70 | 65 52 | idcncfg | |- ( ph -> ( y e. ( B [,] C ) |-> y ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 71 | 69 70 | mulcncf | |- ( ph -> ( y e. ( B [,] C ) |-> ( A x. y ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 72 | 49 71 | cncfmpt1f | |- ( ph -> ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 73 | cniccibl | |- ( ( B e. RR /\ C e. RR /\ ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) -> ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. L^1 ) |
|
| 74 | 3 4 72 73 | syl3anc | |- ( ph -> ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. L^1 ) |
| 75 | 59 61 68 74 | iblss | |- ( ph -> ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) e. L^1 ) |
| 76 | 32 75 | eqeltrd | |- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) e. L^1 ) |
| 77 | coscn | |- cos e. ( CC -cn-> CC ) |
|
| 78 | 77 | a1i | |- ( ph -> cos e. ( CC -cn-> CC ) ) |
| 79 | 78 71 | cncfmpt1f | |- ( ph -> ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 80 | 79 | negcncfg | |- ( ph -> ( y e. ( B [,] C ) |-> -u ( cos ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 81 | 2 | neneqd | |- ( ph -> -. A = 0 ) |
| 82 | elsng | |- ( A e. CC -> ( A e. { 0 } <-> A = 0 ) ) |
|
| 83 | 1 82 | syl | |- ( ph -> ( A e. { 0 } <-> A = 0 ) ) |
| 84 | 81 83 | mtbird | |- ( ph -> -. A e. { 0 } ) |
| 85 | 1 84 | eldifd | |- ( ph -> A e. ( CC \ { 0 } ) ) |
| 86 | difssd | |- ( ph -> ( CC \ { 0 } ) C_ CC ) |
|
| 87 | 65 85 86 | constcncfg | |- ( ph -> ( y e. ( B [,] C ) |-> A ) e. ( ( B [,] C ) -cn-> ( CC \ { 0 } ) ) ) |
| 88 | 80 87 | divcncf | |- ( ph -> ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
| 89 | 3 4 5 57 76 88 | ftc2 | |- ( ph -> S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) _d x = ( ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) ) ) |
| 90 | eqidd | |- ( ph -> ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) = ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) |
|
| 91 | oveq2 | |- ( y = C -> ( A x. y ) = ( A x. C ) ) |
|
| 92 | 91 | fveq2d | |- ( y = C -> ( cos ` ( A x. y ) ) = ( cos ` ( A x. C ) ) ) |
| 93 | 92 | negeqd | |- ( y = C -> -u ( cos ` ( A x. y ) ) = -u ( cos ` ( A x. C ) ) ) |
| 94 | 93 | oveq1d | |- ( y = C -> ( -u ( cos ` ( A x. y ) ) / A ) = ( -u ( cos ` ( A x. C ) ) / A ) ) |
| 95 | 94 | adantl | |- ( ( ph /\ y = C ) -> ( -u ( cos ` ( A x. y ) ) / A ) = ( -u ( cos ` ( A x. C ) ) / A ) ) |
| 96 | 3 | rexrd | |- ( ph -> B e. RR* ) |
| 97 | 4 | rexrd | |- ( ph -> C e. RR* ) |
| 98 | ubicc2 | |- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> C e. ( B [,] C ) ) |
|
| 99 | 96 97 5 98 | syl3anc | |- ( ph -> C e. ( B [,] C ) ) |
| 100 | ovexd | |- ( ph -> ( -u ( cos ` ( A x. C ) ) / A ) e. _V ) |
|
| 101 | 90 95 99 100 | fvmptd | |- ( ph -> ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) = ( -u ( cos ` ( A x. C ) ) / A ) ) |
| 102 | oveq2 | |- ( y = B -> ( A x. y ) = ( A x. B ) ) |
|
| 103 | 102 | fveq2d | |- ( y = B -> ( cos ` ( A x. y ) ) = ( cos ` ( A x. B ) ) ) |
| 104 | 103 | negeqd | |- ( y = B -> -u ( cos ` ( A x. y ) ) = -u ( cos ` ( A x. B ) ) ) |
| 105 | 104 | oveq1d | |- ( y = B -> ( -u ( cos ` ( A x. y ) ) / A ) = ( -u ( cos ` ( A x. B ) ) / A ) ) |
| 106 | 105 | adantl | |- ( ( ph /\ y = B ) -> ( -u ( cos ` ( A x. y ) ) / A ) = ( -u ( cos ` ( A x. B ) ) / A ) ) |
| 107 | lbicc2 | |- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> B e. ( B [,] C ) ) |
|
| 108 | 96 97 5 107 | syl3anc | |- ( ph -> B e. ( B [,] C ) ) |
| 109 | ovexd | |- ( ph -> ( -u ( cos ` ( A x. B ) ) / A ) e. _V ) |
|
| 110 | 90 106 108 109 | fvmptd | |- ( ph -> ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) = ( -u ( cos ` ( A x. B ) ) / A ) ) |
| 111 | 101 110 | oveq12d | |- ( ph -> ( ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) ) = ( ( -u ( cos ` ( A x. C ) ) / A ) - ( -u ( cos ` ( A x. B ) ) / A ) ) ) |
| 112 | 3 | recnd | |- ( ph -> B e. CC ) |
| 113 | 1 112 | mulcld | |- ( ph -> ( A x. B ) e. CC ) |
| 114 | 113 | coscld | |- ( ph -> ( cos ` ( A x. B ) ) e. CC ) |
| 115 | 114 1 2 | divnegd | |- ( ph -> -u ( ( cos ` ( A x. B ) ) / A ) = ( -u ( cos ` ( A x. B ) ) / A ) ) |
| 116 | 115 | eqcomd | |- ( ph -> ( -u ( cos ` ( A x. B ) ) / A ) = -u ( ( cos ` ( A x. B ) ) / A ) ) |
| 117 | 116 | oveq2d | |- ( ph -> ( ( -u ( cos ` ( A x. C ) ) / A ) - ( -u ( cos ` ( A x. B ) ) / A ) ) = ( ( -u ( cos ` ( A x. C ) ) / A ) - -u ( ( cos ` ( A x. B ) ) / A ) ) ) |
| 118 | 4 | recnd | |- ( ph -> C e. CC ) |
| 119 | 1 118 | mulcld | |- ( ph -> ( A x. C ) e. CC ) |
| 120 | 119 | coscld | |- ( ph -> ( cos ` ( A x. C ) ) e. CC ) |
| 121 | 120 | negcld | |- ( ph -> -u ( cos ` ( A x. C ) ) e. CC ) |
| 122 | 121 1 2 | divcld | |- ( ph -> ( -u ( cos ` ( A x. C ) ) / A ) e. CC ) |
| 123 | 114 1 2 | divcld | |- ( ph -> ( ( cos ` ( A x. B ) ) / A ) e. CC ) |
| 124 | 122 123 | subnegd | |- ( ph -> ( ( -u ( cos ` ( A x. C ) ) / A ) - -u ( ( cos ` ( A x. B ) ) / A ) ) = ( ( -u ( cos ` ( A x. C ) ) / A ) + ( ( cos ` ( A x. B ) ) / A ) ) ) |
| 125 | 111 117 124 | 3eqtrd | |- ( ph -> ( ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) ) = ( ( -u ( cos ` ( A x. C ) ) / A ) + ( ( cos ` ( A x. B ) ) / A ) ) ) |
| 126 | 122 123 | addcomd | |- ( ph -> ( ( -u ( cos ` ( A x. C ) ) / A ) + ( ( cos ` ( A x. B ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) / A ) + ( -u ( cos ` ( A x. C ) ) / A ) ) ) |
| 127 | 120 1 2 | divnegd | |- ( ph -> -u ( ( cos ` ( A x. C ) ) / A ) = ( -u ( cos ` ( A x. C ) ) / A ) ) |
| 128 | 127 | eqcomd | |- ( ph -> ( -u ( cos ` ( A x. C ) ) / A ) = -u ( ( cos ` ( A x. C ) ) / A ) ) |
| 129 | 128 | oveq2d | |- ( ph -> ( ( ( cos ` ( A x. B ) ) / A ) + ( -u ( cos ` ( A x. C ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) / A ) + -u ( ( cos ` ( A x. C ) ) / A ) ) ) |
| 130 | 120 1 2 | divcld | |- ( ph -> ( ( cos ` ( A x. C ) ) / A ) e. CC ) |
| 131 | 123 130 | negsubd | |- ( ph -> ( ( ( cos ` ( A x. B ) ) / A ) + -u ( ( cos ` ( A x. C ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) / A ) - ( ( cos ` ( A x. C ) ) / A ) ) ) |
| 132 | 114 120 1 2 | divsubdird | |- ( ph -> ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) = ( ( ( cos ` ( A x. B ) ) / A ) - ( ( cos ` ( A x. C ) ) / A ) ) ) |
| 133 | 132 | eqcomd | |- ( ph -> ( ( ( cos ` ( A x. B ) ) / A ) - ( ( cos ` ( A x. C ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) ) |
| 134 | 129 131 133 | 3eqtrd | |- ( ph -> ( ( ( cos ` ( A x. B ) ) / A ) + ( -u ( cos ` ( A x. C ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) ) |
| 135 | 125 126 134 | 3eqtrd | |- ( ph -> ( ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) ) = ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) ) |
| 136 | 47 89 135 | 3eqtrd | |- ( ph -> S. ( B (,) C ) ( sin ` ( A x. x ) ) _d x = ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) ) |