This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Fundamental Theorem of Calculus, part two. If F is a function continuous on [ A , B ] and continuously differentiable on ( A , B ) , then the integral of the derivative of F is equal to F ( B ) - F ( A ) . This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc2.a | |- ( ph -> A e. RR ) |
|
| ftc2.b | |- ( ph -> B e. RR ) |
||
| ftc2.le | |- ( ph -> A <_ B ) |
||
| ftc2.c | |- ( ph -> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) |
||
| ftc2.i | |- ( ph -> ( RR _D F ) e. L^1 ) |
||
| ftc2.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
||
| Assertion | ftc2 | |- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc2.a | |- ( ph -> A e. RR ) |
|
| 2 | ftc2.b | |- ( ph -> B e. RR ) |
|
| 3 | ftc2.le | |- ( ph -> A <_ B ) |
|
| 4 | ftc2.c | |- ( ph -> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 5 | ftc2.i | |- ( ph -> ( RR _D F ) e. L^1 ) |
|
| 6 | ftc2.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
|
| 7 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 8 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 9 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 10 | 7 8 3 9 | syl3anc | |- ( ph -> B e. ( A [,] B ) ) |
| 11 | fvex | |- ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) e. _V |
|
| 12 | 11 | fvconst2 | |- ( B e. ( A [,] B ) -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) ) |
| 13 | 10 12 | syl | |- ( ph -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) ) |
| 14 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 15 | 14 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 16 | 15 | a1i | |- ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 17 | eqid | |- ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) |
|
| 18 | ssidd | |- ( ph -> ( A (,) B ) C_ ( A (,) B ) ) |
|
| 19 | ioossre | |- ( A (,) B ) C_ RR |
|
| 20 | 19 | a1i | |- ( ph -> ( A (,) B ) C_ RR ) |
| 21 | cncff | |- ( ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
|
| 22 | 4 21 | syl | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 23 | 17 1 2 3 18 20 5 22 | ftc1a | |- ( ph -> ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 24 | cncff | |- ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) |
|
| 25 | 6 24 | syl | |- ( ph -> F : ( A [,] B ) --> CC ) |
| 26 | 25 | feqmptd | |- ( ph -> F = ( x e. ( A [,] B ) |-> ( F ` x ) ) ) |
| 27 | 26 6 | eqeltrrd | |- ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 28 | 14 16 23 27 | cncfmpt2f | |- ( ph -> ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 29 | ax-resscn | |- RR C_ CC |
|
| 30 | 29 | a1i | |- ( ph -> RR C_ CC ) |
| 31 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 32 | 1 2 31 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 33 | fvex | |- ( ( RR _D F ) ` t ) e. _V |
|
| 34 | 33 | a1i | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) x ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
| 35 | 2 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 36 | 35 | rexrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
| 37 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
|
| 38 | 1 2 37 | syl2anc | |- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 39 | 38 | biimpa | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 40 | 39 | simp3d | |- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 41 | iooss2 | |- ( ( B e. RR* /\ x <_ B ) -> ( A (,) x ) C_ ( A (,) B ) ) |
|
| 42 | 36 40 41 | syl2anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) C_ ( A (,) B ) ) |
| 43 | ioombl | |- ( A (,) x ) e. dom vol |
|
| 44 | 43 | a1i | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) e. dom vol ) |
| 45 | 33 | a1i | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
| 46 | 22 | feqmptd | |- ( ph -> ( RR _D F ) = ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) ) |
| 47 | 46 5 | eqeltrrd | |- ( ph -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 48 | 47 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 49 | 42 44 45 48 | iblss | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) x ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 50 | 34 49 | itgcl | |- ( ( ph /\ x e. ( A [,] B ) ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t e. CC ) |
| 51 | 25 | ffvelcdmda | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
| 52 | 50 51 | subcld | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) e. CC ) |
| 53 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 54 | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
|
| 55 | 1 2 54 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 56 | 30 32 52 53 14 55 | dvmptntr | |- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( RR _D ( x e. ( A (,) B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) ) |
| 57 | reelprrecn | |- RR e. { RR , CC } |
|
| 58 | 57 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 59 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 60 | 59 | sseli | |- ( x e. ( A (,) B ) -> x e. ( A [,] B ) ) |
| 61 | 60 50 | sylan2 | |- ( ( ph /\ x e. ( A (,) B ) ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t e. CC ) |
| 62 | 22 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 63 | 17 1 2 3 4 5 | ftc1cn | |- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( RR _D F ) ) |
| 64 | 30 32 50 53 14 55 | dvmptntr | |- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( RR _D ( x e. ( A (,) B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) ) |
| 65 | 22 | feqmptd | |- ( ph -> ( RR _D F ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
| 66 | 63 64 65 | 3eqtr3d | |- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
| 67 | 60 51 | sylan2 | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC ) |
| 68 | 30 32 51 53 14 55 | dvmptntr | |- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) = ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) ) |
| 69 | 26 | oveq2d | |- ( ph -> ( RR _D F ) = ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) ) |
| 70 | 69 65 | eqtr3d | |- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
| 71 | 68 70 | eqtr3d | |- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
| 72 | 58 61 62 66 67 62 71 | dvmptsub | |- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( x e. ( A (,) B ) |-> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) ) ) |
| 73 | 62 | subidd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) = 0 ) |
| 74 | 73 | mpteq2dva | |- ( ph -> ( x e. ( A (,) B ) |-> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) ) = ( x e. ( A (,) B ) |-> 0 ) ) |
| 75 | 56 72 74 | 3eqtrd | |- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( x e. ( A (,) B ) |-> 0 ) ) |
| 76 | fconstmpt | |- ( ( A (,) B ) X. { 0 } ) = ( x e. ( A (,) B ) |-> 0 ) |
|
| 77 | 75 76 | eqtr4di | |- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( ( A (,) B ) X. { 0 } ) ) |
| 78 | 1 2 28 77 | dveq0 | |- ( ph -> ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) = ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ) |
| 79 | 78 | fveq1d | |- ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) ) |
| 80 | oveq2 | |- ( x = B -> ( A (,) x ) = ( A (,) B ) ) |
|
| 81 | itgeq1 | |- ( ( A (,) x ) = ( A (,) B ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
|
| 82 | 80 81 | syl | |- ( x = B -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
| 83 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 84 | 82 83 | oveq12d | |- ( x = B -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
| 85 | eqid | |- ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) = ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) |
|
| 86 | ovex | |- ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) e. _V |
|
| 87 | 84 85 86 | fvmpt | |- ( B e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
| 88 | 10 87 | syl | |- ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
| 89 | 79 88 | eqtr3d | |- ( ph -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
| 90 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 91 | 7 8 3 90 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 92 | oveq2 | |- ( x = A -> ( A (,) x ) = ( A (,) A ) ) |
|
| 93 | iooid | |- ( A (,) A ) = (/) |
|
| 94 | 92 93 | eqtrdi | |- ( x = A -> ( A (,) x ) = (/) ) |
| 95 | itgeq1 | |- ( ( A (,) x ) = (/) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. (/) ( ( RR _D F ) ` t ) _d t ) |
|
| 96 | 94 95 | syl | |- ( x = A -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. (/) ( ( RR _D F ) ` t ) _d t ) |
| 97 | itg0 | |- S. (/) ( ( RR _D F ) ` t ) _d t = 0 |
|
| 98 | 96 97 | eqtrdi | |- ( x = A -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = 0 ) |
| 99 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 100 | 98 99 | oveq12d | |- ( x = A -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = ( 0 - ( F ` A ) ) ) |
| 101 | df-neg | |- -u ( F ` A ) = ( 0 - ( F ` A ) ) |
|
| 102 | 100 101 | eqtr4di | |- ( x = A -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = -u ( F ` A ) ) |
| 103 | negex | |- -u ( F ` A ) e. _V |
|
| 104 | 102 85 103 | fvmpt | |- ( A e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) = -u ( F ` A ) ) |
| 105 | 91 104 | syl | |- ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) = -u ( F ` A ) ) |
| 106 | 13 89 105 | 3eqtr3d | |- ( ph -> ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) = -u ( F ` A ) ) |
| 107 | 106 | oveq2d | |- ( ph -> ( ( F ` B ) + ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) = ( ( F ` B ) + -u ( F ` A ) ) ) |
| 108 | 25 10 | ffvelcdmd | |- ( ph -> ( F ` B ) e. CC ) |
| 109 | 33 | a1i | |- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
| 110 | 109 47 | itgcl | |- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t e. CC ) |
| 111 | 108 110 | pncan3d | |- ( ph -> ( ( F ` B ) + ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
| 112 | 25 91 | ffvelcdmd | |- ( ph -> ( F ` A ) e. CC ) |
| 113 | 108 112 | negsubd | |- ( ph -> ( ( F ` B ) + -u ( F ` A ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 114 | 107 111 113 | 3eqtr3d | |- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |