This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptresicc.f | |- F = ( x e. CC |-> A ) |
|
| dvmptresicc.a | |- ( ( ph /\ x e. CC ) -> A e. CC ) |
||
| dvmptresicc.fdv | |- ( ph -> ( CC _D F ) = ( x e. CC |-> B ) ) |
||
| dvmptresicc.b | |- ( ( ph /\ x e. CC ) -> B e. CC ) |
||
| dvmptresicc.c | |- ( ph -> C e. RR ) |
||
| dvmptresicc.d | |- ( ph -> D e. RR ) |
||
| Assertion | dvmptresicc | |- ( ph -> ( RR _D ( x e. ( C [,] D ) |-> A ) ) = ( x e. ( C (,) D ) |-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptresicc.f | |- F = ( x e. CC |-> A ) |
|
| 2 | dvmptresicc.a | |- ( ( ph /\ x e. CC ) -> A e. CC ) |
|
| 3 | dvmptresicc.fdv | |- ( ph -> ( CC _D F ) = ( x e. CC |-> B ) ) |
|
| 4 | dvmptresicc.b | |- ( ( ph /\ x e. CC ) -> B e. CC ) |
|
| 5 | dvmptresicc.c | |- ( ph -> C e. RR ) |
|
| 6 | dvmptresicc.d | |- ( ph -> D e. RR ) |
|
| 7 | 1 | reseq1i | |- ( F |` ( C [,] D ) ) = ( ( x e. CC |-> A ) |` ( C [,] D ) ) |
| 8 | 5 6 | iccssred | |- ( ph -> ( C [,] D ) C_ RR ) |
| 9 | ax-resscn | |- RR C_ CC |
|
| 10 | 9 | a1i | |- ( ph -> RR C_ CC ) |
| 11 | 8 10 | sstrd | |- ( ph -> ( C [,] D ) C_ CC ) |
| 12 | 11 | resmptd | |- ( ph -> ( ( x e. CC |-> A ) |` ( C [,] D ) ) = ( x e. ( C [,] D ) |-> A ) ) |
| 13 | 7 12 | eqtrid | |- ( ph -> ( F |` ( C [,] D ) ) = ( x e. ( C [,] D ) |-> A ) ) |
| 14 | 13 | oveq2d | |- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( RR _D ( x e. ( C [,] D ) |-> A ) ) ) |
| 15 | 8 | resabs1d | |- ( ph -> ( ( F |` RR ) |` ( C [,] D ) ) = ( F |` ( C [,] D ) ) ) |
| 16 | 15 | eqcomd | |- ( ph -> ( F |` ( C [,] D ) ) = ( ( F |` RR ) |` ( C [,] D ) ) ) |
| 17 | 16 | oveq2d | |- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( RR _D ( ( F |` RR ) |` ( C [,] D ) ) ) ) |
| 18 | 2 1 | fmptd | |- ( ph -> F : CC --> CC ) |
| 19 | 18 10 | fssresd | |- ( ph -> ( F |` RR ) : RR --> CC ) |
| 20 | ssidd | |- ( ph -> RR C_ RR ) |
|
| 21 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 22 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 23 | 21 22 | dvres | |- ( ( ( RR C_ CC /\ ( F |` RR ) : RR --> CC ) /\ ( RR C_ RR /\ ( C [,] D ) C_ RR ) ) -> ( RR _D ( ( F |` RR ) |` ( C [,] D ) ) ) = ( ( RR _D ( F |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) ) |
| 24 | 10 19 20 8 23 | syl22anc | |- ( ph -> ( RR _D ( ( F |` RR ) |` ( C [,] D ) ) ) = ( ( RR _D ( F |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) ) |
| 25 | reelprrecn | |- RR e. { RR , CC } |
|
| 26 | 25 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 27 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 28 | 3 | dmeqd | |- ( ph -> dom ( CC _D F ) = dom ( x e. CC |-> B ) ) |
| 29 | 4 | ralrimiva | |- ( ph -> A. x e. CC B e. CC ) |
| 30 | dmmptg | |- ( A. x e. CC B e. CC -> dom ( x e. CC |-> B ) = CC ) |
|
| 31 | 29 30 | syl | |- ( ph -> dom ( x e. CC |-> B ) = CC ) |
| 32 | 28 31 | eqtr2d | |- ( ph -> CC = dom ( CC _D F ) ) |
| 33 | 10 32 | sseqtrd | |- ( ph -> RR C_ dom ( CC _D F ) ) |
| 34 | dvres3 | |- ( ( ( RR e. { RR , CC } /\ F : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D F ) ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
|
| 35 | 26 18 27 33 34 | syl22anc | |- ( ph -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
| 36 | iccntr | |- ( ( C e. RR /\ D e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) = ( C (,) D ) ) |
|
| 37 | 5 6 36 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) = ( C (,) D ) ) |
| 38 | 35 37 | reseq12d | |- ( ph -> ( ( RR _D ( F |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) = ( ( ( CC _D F ) |` RR ) |` ( C (,) D ) ) ) |
| 39 | ioossre | |- ( C (,) D ) C_ RR |
|
| 40 | resabs1 | |- ( ( C (,) D ) C_ RR -> ( ( ( CC _D F ) |` RR ) |` ( C (,) D ) ) = ( ( CC _D F ) |` ( C (,) D ) ) ) |
|
| 41 | 39 40 | mp1i | |- ( ph -> ( ( ( CC _D F ) |` RR ) |` ( C (,) D ) ) = ( ( CC _D F ) |` ( C (,) D ) ) ) |
| 42 | 3 | reseq1d | |- ( ph -> ( ( CC _D F ) |` ( C (,) D ) ) = ( ( x e. CC |-> B ) |` ( C (,) D ) ) ) |
| 43 | ioosscn | |- ( C (,) D ) C_ CC |
|
| 44 | resmpt | |- ( ( C (,) D ) C_ CC -> ( ( x e. CC |-> B ) |` ( C (,) D ) ) = ( x e. ( C (,) D ) |-> B ) ) |
|
| 45 | 43 44 | mp1i | |- ( ph -> ( ( x e. CC |-> B ) |` ( C (,) D ) ) = ( x e. ( C (,) D ) |-> B ) ) |
| 46 | 42 45 | eqtrd | |- ( ph -> ( ( CC _D F ) |` ( C (,) D ) ) = ( x e. ( C (,) D ) |-> B ) ) |
| 47 | 38 41 46 | 3eqtrd | |- ( ph -> ( ( RR _D ( F |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) = ( x e. ( C (,) D ) |-> B ) ) |
| 48 | 17 24 47 | 3eqtrd | |- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( x e. ( C (,) D ) |-> B ) ) |
| 49 | 14 48 | eqtr3d | |- ( ph -> ( RR _D ( x e. ( C [,] D ) |-> A ) ) = ( x e. ( C (,) D ) |-> B ) ) |