This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative exercise: the derivative with respect to x of cos(Ax), given a constant A . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvcosax | |- ( A e. CC -> ( CC _D ( x e. CC |-> ( cos ` ( A x. x ) ) ) ) = ( x e. CC |-> ( A x. -u ( sin ` ( A x. x ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | |- ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) |
|
| 2 | eqidd | |- ( A e. CC -> ( x e. CC |-> ( A x. x ) ) = ( x e. CC |-> ( A x. x ) ) ) |
|
| 3 | cosf | |- cos : CC --> CC |
|
| 4 | 3 | a1i | |- ( A e. CC -> cos : CC --> CC ) |
| 5 | 4 | feqmptd | |- ( A e. CC -> cos = ( y e. CC |-> ( cos ` y ) ) ) |
| 6 | fveq2 | |- ( y = ( A x. x ) -> ( cos ` y ) = ( cos ` ( A x. x ) ) ) |
|
| 7 | 1 2 5 6 | fmptco | |- ( A e. CC -> ( cos o. ( x e. CC |-> ( A x. x ) ) ) = ( x e. CC |-> ( cos ` ( A x. x ) ) ) ) |
| 8 | 7 | eqcomd | |- ( A e. CC -> ( x e. CC |-> ( cos ` ( A x. x ) ) ) = ( cos o. ( x e. CC |-> ( A x. x ) ) ) ) |
| 9 | 8 | oveq2d | |- ( A e. CC -> ( CC _D ( x e. CC |-> ( cos ` ( A x. x ) ) ) ) = ( CC _D ( cos o. ( x e. CC |-> ( A x. x ) ) ) ) ) |
| 10 | cnelprrecn | |- CC e. { RR , CC } |
|
| 11 | 10 | a1i | |- ( A e. CC -> CC e. { RR , CC } ) |
| 12 | 1 | fmpttd | |- ( A e. CC -> ( x e. CC |-> ( A x. x ) ) : CC --> CC ) |
| 13 | dvcos | |- ( CC _D cos ) = ( x e. CC |-> -u ( sin ` x ) ) |
|
| 14 | 13 | dmeqi | |- dom ( CC _D cos ) = dom ( x e. CC |-> -u ( sin ` x ) ) |
| 15 | dmmptg | |- ( A. x e. CC -u ( sin ` x ) e. CC -> dom ( x e. CC |-> -u ( sin ` x ) ) = CC ) |
|
| 16 | sincl | |- ( x e. CC -> ( sin ` x ) e. CC ) |
|
| 17 | 16 | negcld | |- ( x e. CC -> -u ( sin ` x ) e. CC ) |
| 18 | 15 17 | mprg | |- dom ( x e. CC |-> -u ( sin ` x ) ) = CC |
| 19 | 14 18 | eqtri | |- dom ( CC _D cos ) = CC |
| 20 | 19 | a1i | |- ( A e. CC -> dom ( CC _D cos ) = CC ) |
| 21 | simpl | |- ( ( A e. CC /\ x e. CC ) -> A e. CC ) |
|
| 22 | 0red | |- ( ( A e. CC /\ x e. CC ) -> 0 e. RR ) |
|
| 23 | id | |- ( A e. CC -> A e. CC ) |
|
| 24 | 11 23 | dvmptc | |- ( A e. CC -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> 0 ) ) |
| 25 | simpr | |- ( ( A e. CC /\ x e. CC ) -> x e. CC ) |
|
| 26 | 1red | |- ( ( A e. CC /\ x e. CC ) -> 1 e. RR ) |
|
| 27 | 11 | dvmptid | |- ( A e. CC -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
| 28 | 11 21 22 24 25 26 27 | dvmptmul | |- ( A e. CC -> ( CC _D ( x e. CC |-> ( A x. x ) ) ) = ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) ) |
| 29 | 28 | dmeqd | |- ( A e. CC -> dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) = dom ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) ) |
| 30 | dmmptg | |- ( A. x e. CC ( ( 0 x. x ) + ( 1 x. A ) ) e. _V -> dom ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) = CC ) |
|
| 31 | ovex | |- ( ( 0 x. x ) + ( 1 x. A ) ) e. _V |
|
| 32 | 31 | a1i | |- ( x e. CC -> ( ( 0 x. x ) + ( 1 x. A ) ) e. _V ) |
| 33 | 30 32 | mprg | |- dom ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) = CC |
| 34 | 29 33 | eqtrdi | |- ( A e. CC -> dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) = CC ) |
| 35 | 11 11 4 12 20 34 | dvcof | |- ( A e. CC -> ( CC _D ( cos o. ( x e. CC |-> ( A x. x ) ) ) ) = ( ( ( CC _D cos ) o. ( x e. CC |-> ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) |
| 36 | dvcos | |- ( CC _D cos ) = ( y e. CC |-> -u ( sin ` y ) ) |
|
| 37 | 36 | a1i | |- ( A e. CC -> ( CC _D cos ) = ( y e. CC |-> -u ( sin ` y ) ) ) |
| 38 | fveq2 | |- ( y = ( A x. x ) -> ( sin ` y ) = ( sin ` ( A x. x ) ) ) |
|
| 39 | 38 | negeqd | |- ( y = ( A x. x ) -> -u ( sin ` y ) = -u ( sin ` ( A x. x ) ) ) |
| 40 | 1 2 37 39 | fmptco | |- ( A e. CC -> ( ( CC _D cos ) o. ( x e. CC |-> ( A x. x ) ) ) = ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ) |
| 41 | 40 | oveq1d | |- ( A e. CC -> ( ( ( CC _D cos ) o. ( x e. CC |-> ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) |
| 42 | cnex | |- CC e. _V |
|
| 43 | 42 | mptex | |- ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) e. _V |
| 44 | ovex | |- ( CC _D ( x e. CC |-> ( A x. x ) ) ) e. _V |
|
| 45 | offval3 | |- ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) e. _V /\ ( CC _D ( x e. CC |-> ( A x. x ) ) ) e. _V ) -> ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) |-> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) ) ) |
|
| 46 | 43 44 45 | mp2an | |- ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) |-> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) ) |
| 47 | 46 | a1i | |- ( A e. CC -> ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) |-> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) ) ) |
| 48 | 1 | sincld | |- ( ( A e. CC /\ x e. CC ) -> ( sin ` ( A x. x ) ) e. CC ) |
| 49 | 48 | negcld | |- ( ( A e. CC /\ x e. CC ) -> -u ( sin ` ( A x. x ) ) e. CC ) |
| 50 | 49 | ralrimiva | |- ( A e. CC -> A. x e. CC -u ( sin ` ( A x. x ) ) e. CC ) |
| 51 | dmmptg | |- ( A. x e. CC -u ( sin ` ( A x. x ) ) e. CC -> dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) = CC ) |
|
| 52 | 50 51 | syl | |- ( A e. CC -> dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) = CC ) |
| 53 | 52 34 | ineq12d | |- ( A e. CC -> ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( CC i^i CC ) ) |
| 54 | inidm | |- ( CC i^i CC ) = CC |
|
| 55 | 53 54 | eqtrdi | |- ( A e. CC -> ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = CC ) |
| 56 | simpr | |- ( ( A e. CC /\ y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) -> y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) |
|
| 57 | 55 | adantr | |- ( ( A e. CC /\ y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) -> ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = CC ) |
| 58 | 56 57 | eleqtrd | |- ( ( A e. CC /\ y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) -> y e. CC ) |
| 59 | eqidd | |- ( y e. CC -> ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) = ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ) |
|
| 60 | oveq2 | |- ( x = y -> ( A x. x ) = ( A x. y ) ) |
|
| 61 | 60 | fveq2d | |- ( x = y -> ( sin ` ( A x. x ) ) = ( sin ` ( A x. y ) ) ) |
| 62 | 61 | negeqd | |- ( x = y -> -u ( sin ` ( A x. x ) ) = -u ( sin ` ( A x. y ) ) ) |
| 63 | 62 | adantl | |- ( ( y e. CC /\ x = y ) -> -u ( sin ` ( A x. x ) ) = -u ( sin ` ( A x. y ) ) ) |
| 64 | id | |- ( y e. CC -> y e. CC ) |
|
| 65 | negex | |- -u ( sin ` ( A x. y ) ) e. _V |
|
| 66 | 65 | a1i | |- ( y e. CC -> -u ( sin ` ( A x. y ) ) e. _V ) |
| 67 | 59 63 64 66 | fvmptd | |- ( y e. CC -> ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) = -u ( sin ` ( A x. y ) ) ) |
| 68 | 67 | adantl | |- ( ( A e. CC /\ y e. CC ) -> ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) = -u ( sin ` ( A x. y ) ) ) |
| 69 | 28 | adantr | |- ( ( A e. CC /\ y e. CC ) -> ( CC _D ( x e. CC |-> ( A x. x ) ) ) = ( x e. CC |-> ( ( 0 x. x ) + ( 1 x. A ) ) ) ) |
| 70 | oveq2 | |- ( x = y -> ( 0 x. x ) = ( 0 x. y ) ) |
|
| 71 | 70 | oveq1d | |- ( x = y -> ( ( 0 x. x ) + ( 1 x. A ) ) = ( ( 0 x. y ) + ( 1 x. A ) ) ) |
| 72 | mul02 | |- ( y e. CC -> ( 0 x. y ) = 0 ) |
|
| 73 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 74 | 72 73 | oveqan12rd | |- ( ( A e. CC /\ y e. CC ) -> ( ( 0 x. y ) + ( 1 x. A ) ) = ( 0 + A ) ) |
| 75 | addlid | |- ( A e. CC -> ( 0 + A ) = A ) |
|
| 76 | 75 | adantr | |- ( ( A e. CC /\ y e. CC ) -> ( 0 + A ) = A ) |
| 77 | 74 76 | eqtrd | |- ( ( A e. CC /\ y e. CC ) -> ( ( 0 x. y ) + ( 1 x. A ) ) = A ) |
| 78 | 71 77 | sylan9eqr | |- ( ( ( A e. CC /\ y e. CC ) /\ x = y ) -> ( ( 0 x. x ) + ( 1 x. A ) ) = A ) |
| 79 | simpr | |- ( ( A e. CC /\ y e. CC ) -> y e. CC ) |
|
| 80 | simpl | |- ( ( A e. CC /\ y e. CC ) -> A e. CC ) |
|
| 81 | 69 78 79 80 | fvmptd | |- ( ( A e. CC /\ y e. CC ) -> ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) = A ) |
| 82 | 68 81 | oveq12d | |- ( ( A e. CC /\ y e. CC ) -> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) = ( -u ( sin ` ( A x. y ) ) x. A ) ) |
| 83 | mulcl | |- ( ( A e. CC /\ y e. CC ) -> ( A x. y ) e. CC ) |
|
| 84 | 83 | sincld | |- ( ( A e. CC /\ y e. CC ) -> ( sin ` ( A x. y ) ) e. CC ) |
| 85 | 84 | negcld | |- ( ( A e. CC /\ y e. CC ) -> -u ( sin ` ( A x. y ) ) e. CC ) |
| 86 | 85 80 | mulcomd | |- ( ( A e. CC /\ y e. CC ) -> ( -u ( sin ` ( A x. y ) ) x. A ) = ( A x. -u ( sin ` ( A x. y ) ) ) ) |
| 87 | 82 86 | eqtrd | |- ( ( A e. CC /\ y e. CC ) -> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) = ( A x. -u ( sin ` ( A x. y ) ) ) ) |
| 88 | 58 87 | syldan | |- ( ( A e. CC /\ y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) ) -> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) = ( A x. -u ( sin ` ( A x. y ) ) ) ) |
| 89 | 55 88 | mpteq12dva | |- ( A e. CC -> ( y e. ( dom ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) i^i dom ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) |-> ( ( ( x e. CC |-> -u ( sin ` ( A x. x ) ) ) ` y ) x. ( ( CC _D ( x e. CC |-> ( A x. x ) ) ) ` y ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
| 90 | 41 47 89 | 3eqtrd | |- ( A e. CC -> ( ( ( CC _D cos ) o. ( x e. CC |-> ( A x. x ) ) ) oF x. ( CC _D ( x e. CC |-> ( A x. x ) ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
| 91 | 9 35 90 | 3eqtrd | |- ( A e. CC -> ( CC _D ( x e. CC |-> ( cos ` ( A x. x ) ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
| 92 | oveq2 | |- ( y = x -> ( A x. y ) = ( A x. x ) ) |
|
| 93 | 92 | fveq2d | |- ( y = x -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. x ) ) ) |
| 94 | 93 | negeqd | |- ( y = x -> -u ( sin ` ( A x. y ) ) = -u ( sin ` ( A x. x ) ) ) |
| 95 | 94 | oveq2d | |- ( y = x -> ( A x. -u ( sin ` ( A x. y ) ) ) = ( A x. -u ( sin ` ( A x. x ) ) ) ) |
| 96 | 95 | cbvmptv | |- ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) = ( x e. CC |-> ( A x. -u ( sin ` ( A x. x ) ) ) ) |
| 97 | 91 96 | eqtrdi | |- ( A e. CC -> ( CC _D ( x e. CC |-> ( cos ` ( A x. x ) ) ) ) = ( x e. CC |-> ( A x. -u ( sin ` ( A x. x ) ) ) ) ) |