This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divcncf.1 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
|
| divcncf.2 | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> ( CC \ { 0 } ) ) ) |
||
| Assertion | divcncf | |- ( ph -> ( x e. X |-> ( A / B ) ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcncf.1 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
|
| 2 | divcncf.2 | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> ( CC \ { 0 } ) ) ) |
|
| 3 | cncff | |- ( ( x e. X |-> A ) e. ( X -cn-> CC ) -> ( x e. X |-> A ) : X --> CC ) |
|
| 4 | 1 3 | syl | |- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 5 | 4 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> A e. CC ) |
| 6 | cncff | |- ( ( x e. X |-> B ) e. ( X -cn-> ( CC \ { 0 } ) ) -> ( x e. X |-> B ) : X --> ( CC \ { 0 } ) ) |
|
| 7 | 2 6 | syl | |- ( ph -> ( x e. X |-> B ) : X --> ( CC \ { 0 } ) ) |
| 8 | 7 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> B e. ( CC \ { 0 } ) ) |
| 9 | 8 | eldifad | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| 10 | eldifsni | |- ( B e. ( CC \ { 0 } ) -> B =/= 0 ) |
|
| 11 | 8 10 | syl | |- ( ( ph /\ x e. X ) -> B =/= 0 ) |
| 12 | 5 9 11 | divrecd | |- ( ( ph /\ x e. X ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 13 | 12 | mpteq2dva | |- ( ph -> ( x e. X |-> ( A / B ) ) = ( x e. X |-> ( A x. ( 1 / B ) ) ) ) |
| 14 | 8 | ralrimiva | |- ( ph -> A. x e. X B e. ( CC \ { 0 } ) ) |
| 15 | eqidd | |- ( ph -> ( x e. X |-> B ) = ( x e. X |-> B ) ) |
|
| 16 | eqidd | |- ( ph -> ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) = ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ) |
|
| 17 | 14 15 16 | fmptcos | |- ( ph -> ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) o. ( x e. X |-> B ) ) = ( x e. X |-> [_ B / y ]_ ( 1 / y ) ) ) |
| 18 | csbov2g | |- ( B e. CC -> [_ B / y ]_ ( 1 / y ) = ( 1 / [_ B / y ]_ y ) ) |
|
| 19 | 9 18 | syl | |- ( ( ph /\ x e. X ) -> [_ B / y ]_ ( 1 / y ) = ( 1 / [_ B / y ]_ y ) ) |
| 20 | csbvarg | |- ( B e. CC -> [_ B / y ]_ y = B ) |
|
| 21 | 9 20 | syl | |- ( ( ph /\ x e. X ) -> [_ B / y ]_ y = B ) |
| 22 | 21 | oveq2d | |- ( ( ph /\ x e. X ) -> ( 1 / [_ B / y ]_ y ) = ( 1 / B ) ) |
| 23 | 19 22 | eqtrd | |- ( ( ph /\ x e. X ) -> [_ B / y ]_ ( 1 / y ) = ( 1 / B ) ) |
| 24 | 23 | mpteq2dva | |- ( ph -> ( x e. X |-> [_ B / y ]_ ( 1 / y ) ) = ( x e. X |-> ( 1 / B ) ) ) |
| 25 | 17 24 | eqtr2d | |- ( ph -> ( x e. X |-> ( 1 / B ) ) = ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) o. ( x e. X |-> B ) ) ) |
| 26 | ax-1cn | |- 1 e. CC |
|
| 27 | eqid | |- ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) = ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) |
|
| 28 | 27 | cdivcncf | |- ( 1 e. CC -> ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) e. ( ( CC \ { 0 } ) -cn-> CC ) ) |
| 29 | 26 28 | mp1i | |- ( ph -> ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) e. ( ( CC \ { 0 } ) -cn-> CC ) ) |
| 30 | 2 29 | cncfco | |- ( ph -> ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) o. ( x e. X |-> B ) ) e. ( X -cn-> CC ) ) |
| 31 | 25 30 | eqeltrd | |- ( ph -> ( x e. X |-> ( 1 / B ) ) e. ( X -cn-> CC ) ) |
| 32 | 1 31 | mulcncf | |- ( ph -> ( x e. X |-> ( A x. ( 1 / B ) ) ) e. ( X -cn-> CC ) ) |
| 33 | 13 32 | eqeltrd | |- ( ph -> ( x e. X |-> ( A / B ) ) e. ( X -cn-> CC ) ) |