This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exercise: the integral of x |-> sin a x on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsincmulx.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| itgsincmulx.an0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| itgsincmulx.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| itgsincmulx.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| itgsincmulx.blec | ⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) | ||
| Assertion | itgsincmulx | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( sin ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsincmulx.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | itgsincmulx.an0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 3 | itgsincmulx.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | itgsincmulx.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 5 | itgsincmulx.blec | ⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) | |
| 6 | eqid | ⊢ ( 𝑦 ∈ ℂ ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) = ( 𝑦 ∈ ℂ ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) | |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) | |
| 9 | 7 8 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 10 | 9 | coscld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 11 | 10 | negcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐴 ≠ 0 ) |
| 13 | 11 7 12 | divcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ∈ ℂ ) |
| 14 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
| 16 | 9 | sincld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 17 | 16 | negcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 18 | 7 17 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
| 19 | 18 | negcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
| 20 | dvcosax | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) | |
| 21 | 1 20 | syl | ⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 22 | 15 10 18 21 | dvmptneg | ⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ - ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 23 | 15 11 19 22 1 2 | dvmptdivc | ⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ) |
| 24 | 18 7 12 | divnegd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) |
| 25 | 24 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = - ( ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) |
| 26 | 17 7 12 | divcan3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 27 | 26 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = - - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 28 | 16 | negnegd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - - ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 29 | 25 27 28 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 30 | 29 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) = ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 31 | 23 30 | eqtrd | ⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 32 | 6 13 31 16 3 4 | dvmptresicc | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 33 | 32 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑥 ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑥 ) ) |
| 35 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) | |
| 36 | oveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑥 ) ) | |
| 37 | 36 | fveq2d | ⊢ ( 𝑦 = 𝑥 → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) ∧ 𝑦 = 𝑥 ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 39 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) | |
| 40 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝐴 ∈ ℂ ) |
| 41 | ioosscn | ⊢ ( 𝐵 (,) 𝐶 ) ⊆ ℂ | |
| 42 | 41 39 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ℂ ) |
| 43 | 40 42 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 44 | 43 | sincld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 45 | 35 38 39 44 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑥 ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 46 | 34 45 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( sin ‘ ( 𝐴 · 𝑥 ) ) = ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) ) |
| 47 | 46 | itgeq2dv | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( sin ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
| 48 | sincn | ⊢ sin ∈ ( ℂ –cn→ ℂ ) | |
| 49 | 48 | a1i | ⊢ ( 𝜑 → sin ∈ ( ℂ –cn→ ℂ ) ) |
| 50 | 41 | a1i | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ℂ ) |
| 51 | ssid | ⊢ ℂ ⊆ ℂ | |
| 52 | 51 | a1i | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 53 | 50 1 52 | constcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 54 | 50 52 | idcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝑦 ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 55 | 53 54 | mulcncf | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( 𝐴 · 𝑦 ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 56 | 49 55 | cncfmpt1f | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 57 | 32 56 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 58 | ioossicc | ⊢ ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,] 𝐶 ) | |
| 59 | 58 | a1i | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,] 𝐶 ) ) |
| 60 | ioombl | ⊢ ( 𝐵 (,) 𝐶 ) ∈ dom vol | |
| 61 | 60 | a1i | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ∈ dom vol ) |
| 62 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐴 ∈ ℂ ) |
| 63 | 3 4 | iccssred | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 64 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 65 | 63 64 | sstrdi | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℂ ) |
| 66 | 65 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑦 ∈ ℂ ) |
| 67 | 62 66 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 68 | 67 | sincld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 69 | 65 1 52 | constcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 70 | 65 52 | idcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝑦 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 71 | 69 70 | mulcncf | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( 𝐴 · 𝑦 ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 72 | 49 71 | cncfmpt1f | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 73 | cniccibl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) | |
| 74 | 3 4 72 73 | syl3anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
| 75 | 59 61 68 74 | iblss | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
| 76 | 32 75 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ∈ 𝐿1 ) |
| 77 | coscn | ⊢ cos ∈ ( ℂ –cn→ ℂ ) | |
| 78 | 77 | a1i | ⊢ ( 𝜑 → cos ∈ ( ℂ –cn→ ℂ ) ) |
| 79 | 78 71 | cncfmpt1f | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 80 | 79 | negcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ - ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 81 | 2 | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = 0 ) |
| 82 | elsng | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ { 0 } ↔ 𝐴 = 0 ) ) | |
| 83 | 1 82 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ { 0 } ↔ 𝐴 = 0 ) ) |
| 84 | 81 83 | mtbird | ⊢ ( 𝜑 → ¬ 𝐴 ∈ { 0 } ) |
| 85 | 1 84 | eldifd | ⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 86 | difssd | ⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ⊆ ℂ ) | |
| 87 | 65 85 86 | constcncfg | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ( ℂ ∖ { 0 } ) ) ) |
| 88 | 80 87 | divcncf | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 89 | 3 4 5 57 76 88 | ftc2 | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) ) |
| 90 | eqidd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) = ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) | |
| 91 | oveq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐶 ) ) | |
| 92 | 91 | fveq2d | ⊢ ( 𝑦 = 𝐶 → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝐶 ) ) ) |
| 93 | 92 | negeqd | ⊢ ( 𝑦 = 𝐶 → - ( cos ‘ ( 𝐴 · 𝑦 ) ) = - ( cos ‘ ( 𝐴 · 𝐶 ) ) ) |
| 94 | 93 | oveq1d | ⊢ ( 𝑦 = 𝐶 → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 95 | 94 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐶 ) → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 96 | 3 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 97 | 4 | rexrd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 98 | ubicc2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ( 𝐵 [,] 𝐶 ) ) | |
| 99 | 96 97 5 98 | syl3anc | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 100 | ovexd | ⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ∈ V ) | |
| 101 | 90 95 99 100 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) = ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 102 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐵 ) ) | |
| 103 | 102 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝐵 ) ) ) |
| 104 | 103 | negeqd | ⊢ ( 𝑦 = 𝐵 → - ( cos ‘ ( 𝐴 · 𝑦 ) ) = - ( cos ‘ ( 𝐴 · 𝐵 ) ) ) |
| 105 | 104 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 106 | 105 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 107 | lbicc2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) | |
| 108 | 96 97 5 107 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 109 | ovexd | ⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ∈ V ) | |
| 110 | 90 106 108 109 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) = ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 111 | 101 110 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) = ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
| 112 | 3 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 113 | 1 112 | mulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 114 | 113 | coscld | ⊢ ( 𝜑 → ( cos ‘ ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
| 115 | 114 1 2 | divnegd | ⊢ ( 𝜑 → - ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 116 | 115 | eqcomd | ⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) = - ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 117 | 116 | oveq2d | ⊢ ( 𝜑 → ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) = ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − - ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
| 118 | 4 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 119 | 1 118 | mulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 120 | 119 | coscld | ⊢ ( 𝜑 → ( cos ‘ ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
| 121 | 120 | negcld | ⊢ ( 𝜑 → - ( cos ‘ ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
| 122 | 121 1 2 | divcld | ⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ∈ ℂ ) |
| 123 | 114 1 2 | divcld | ⊢ ( 𝜑 → ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ∈ ℂ ) |
| 124 | 122 123 | subnegd | ⊢ ( 𝜑 → ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − - ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) = ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) + ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
| 125 | 111 117 124 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) = ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) + ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
| 126 | 122 123 | addcomd | ⊢ ( 𝜑 → ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) + ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) ) |
| 127 | 120 1 2 | divnegd | ⊢ ( 𝜑 → - ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 128 | 127 | eqcomd | ⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) = - ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 129 | 128 | oveq2d | ⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + - ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) ) |
| 130 | 120 1 2 | divcld | ⊢ ( 𝜑 → ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ∈ ℂ ) |
| 131 | 123 130 | negsubd | ⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + - ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) − ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) ) |
| 132 | 114 120 1 2 | divsubdird | ⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) − ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) ) |
| 133 | 132 | eqcomd | ⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) − ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) ) |
| 134 | 129 131 133 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) ) |
| 135 | 125 126 134 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) ) |
| 136 | 47 89 135 | 3eqtrd | ⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( sin ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) ) |