This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: lemma for itgsubsticc . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsubsticclem.1 | |- F = ( u e. ( K [,] L ) |-> C ) |
|
| itgsubsticclem.2 | |- G = ( u e. RR |-> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) ) |
||
| itgsubsticclem.3 | |- ( ph -> X e. RR ) |
||
| itgsubsticclem.4 | |- ( ph -> Y e. RR ) |
||
| itgsubsticclem.5 | |- ( ph -> X <_ Y ) |
||
| itgsubsticclem.6 | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) ) |
||
| itgsubsticclem.7 | |- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( ( X (,) Y ) -cn-> CC ) i^i L^1 ) ) |
||
| itgsubsticclem.8 | |- ( ph -> F e. ( ( K [,] L ) -cn-> CC ) ) |
||
| itgsubsticclem.9 | |- ( ph -> K e. RR ) |
||
| itgsubsticclem.10 | |- ( ph -> L e. RR ) |
||
| itgsubsticclem.11 | |- ( ph -> K <_ L ) |
||
| itgsubsticclem.12 | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
||
| itgsubsticclem.13 | |- ( u = A -> C = E ) |
||
| itgsubsticclem.14 | |- ( x = X -> A = K ) |
||
| itgsubsticclem.15 | |- ( x = Y -> A = L ) |
||
| Assertion | itgsubsticclem | |- ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( E x. B ) _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsubsticclem.1 | |- F = ( u e. ( K [,] L ) |-> C ) |
|
| 2 | itgsubsticclem.2 | |- G = ( u e. RR |-> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) ) |
|
| 3 | itgsubsticclem.3 | |- ( ph -> X e. RR ) |
|
| 4 | itgsubsticclem.4 | |- ( ph -> Y e. RR ) |
|
| 5 | itgsubsticclem.5 | |- ( ph -> X <_ Y ) |
|
| 6 | itgsubsticclem.6 | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) ) |
|
| 7 | itgsubsticclem.7 | |- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( ( X (,) Y ) -cn-> CC ) i^i L^1 ) ) |
|
| 8 | itgsubsticclem.8 | |- ( ph -> F e. ( ( K [,] L ) -cn-> CC ) ) |
|
| 9 | itgsubsticclem.9 | |- ( ph -> K e. RR ) |
|
| 10 | itgsubsticclem.10 | |- ( ph -> L e. RR ) |
|
| 11 | itgsubsticclem.11 | |- ( ph -> K <_ L ) |
|
| 12 | itgsubsticclem.12 | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
|
| 13 | itgsubsticclem.13 | |- ( u = A -> C = E ) |
|
| 14 | itgsubsticclem.14 | |- ( x = X -> A = K ) |
|
| 15 | itgsubsticclem.15 | |- ( x = Y -> A = L ) |
|
| 16 | fveq2 | |- ( u = w -> ( G ` u ) = ( G ` w ) ) |
|
| 17 | nfcv | |- F/_ w ( G ` u ) |
|
| 18 | nfmpt1 | |- F/_ u ( u e. RR |-> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) ) |
|
| 19 | 2 18 | nfcxfr | |- F/_ u G |
| 20 | nfcv | |- F/_ u w |
|
| 21 | 19 20 | nffv | |- F/_ u ( G ` w ) |
| 22 | 16 17 21 | cbvditg | |- S_ [ K -> L ] ( G ` u ) _d u = S_ [ K -> L ] ( G ` w ) _d w |
| 23 | 9 10 | iccssred | |- ( ph -> ( K [,] L ) C_ RR ) |
| 24 | 23 | adantr | |- ( ( ph /\ u e. ( K (,) L ) ) -> ( K [,] L ) C_ RR ) |
| 25 | ioossicc | |- ( K (,) L ) C_ ( K [,] L ) |
|
| 26 | 25 | sseli | |- ( u e. ( K (,) L ) -> u e. ( K [,] L ) ) |
| 27 | 26 | adantl | |- ( ( ph /\ u e. ( K (,) L ) ) -> u e. ( K [,] L ) ) |
| 28 | 24 27 | sseldd | |- ( ( ph /\ u e. ( K (,) L ) ) -> u e. RR ) |
| 29 | 27 | iftrued | |- ( ( ph /\ u e. ( K (,) L ) ) -> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) = ( F ` u ) ) |
| 30 | 1 | a1i | |- ( ph -> F = ( u e. ( K [,] L ) |-> C ) ) |
| 31 | cncff | |- ( F e. ( ( K [,] L ) -cn-> CC ) -> F : ( K [,] L ) --> CC ) |
|
| 32 | 8 31 | syl | |- ( ph -> F : ( K [,] L ) --> CC ) |
| 33 | 30 32 | feq1dd | |- ( ph -> ( u e. ( K [,] L ) |-> C ) : ( K [,] L ) --> CC ) |
| 34 | 33 | fvmptelcdm | |- ( ( ph /\ u e. ( K [,] L ) ) -> C e. CC ) |
| 35 | 27 34 | syldan | |- ( ( ph /\ u e. ( K (,) L ) ) -> C e. CC ) |
| 36 | 1 | fvmpt2 | |- ( ( u e. ( K [,] L ) /\ C e. CC ) -> ( F ` u ) = C ) |
| 37 | 27 35 36 | syl2anc | |- ( ( ph /\ u e. ( K (,) L ) ) -> ( F ` u ) = C ) |
| 38 | 37 35 | eqeltrd | |- ( ( ph /\ u e. ( K (,) L ) ) -> ( F ` u ) e. CC ) |
| 39 | 29 38 | eqeltrd | |- ( ( ph /\ u e. ( K (,) L ) ) -> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) e. CC ) |
| 40 | 2 | fvmpt2 | |- ( ( u e. RR /\ if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) e. CC ) -> ( G ` u ) = if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) ) |
| 41 | 28 39 40 | syl2anc | |- ( ( ph /\ u e. ( K (,) L ) ) -> ( G ` u ) = if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) ) |
| 42 | 41 29 37 | 3eqtrd | |- ( ( ph /\ u e. ( K (,) L ) ) -> ( G ` u ) = C ) |
| 43 | 11 42 | ditgeq3d | |- ( ph -> S_ [ K -> L ] ( G ` u ) _d u = S_ [ K -> L ] C _d u ) |
| 44 | mnfxr | |- -oo e. RR* |
|
| 45 | 44 | a1i | |- ( ph -> -oo e. RR* ) |
| 46 | pnfxr | |- +oo e. RR* |
|
| 47 | 46 | a1i | |- ( ph -> +oo e. RR* ) |
| 48 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 49 | 48 | eqcomi | |- RR = ( -oo (,) +oo ) |
| 50 | 49 | a1i | |- ( ph -> RR = ( -oo (,) +oo ) ) |
| 51 | 23 50 | sseqtrd | |- ( ph -> ( K [,] L ) C_ ( -oo (,) +oo ) ) |
| 52 | ax-resscn | |- RR C_ CC |
|
| 53 | 50 52 | eqsstrrdi | |- ( ph -> ( -oo (,) +oo ) C_ CC ) |
| 54 | cncfss | |- ( ( ( K [,] L ) C_ ( -oo (,) +oo ) /\ ( -oo (,) +oo ) C_ CC ) -> ( ( X [,] Y ) -cn-> ( K [,] L ) ) C_ ( ( X [,] Y ) -cn-> ( -oo (,) +oo ) ) ) |
|
| 55 | 51 53 54 | syl2anc | |- ( ph -> ( ( X [,] Y ) -cn-> ( K [,] L ) ) C_ ( ( X [,] Y ) -cn-> ( -oo (,) +oo ) ) ) |
| 56 | 55 6 | sseldd | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( -oo (,) +oo ) ) ) |
| 57 | nfmpt1 | |- F/_ u ( u e. ( K [,] L ) |-> C ) |
|
| 58 | 1 57 | nfcxfr | |- F/_ u F |
| 59 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 60 | eqid | |- U. ( TopOpen ` CCfld ) = U. ( TopOpen ` CCfld ) |
|
| 61 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 62 | 61 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 63 | 62 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 64 | 23 52 | sstrdi | |- ( ph -> ( K [,] L ) C_ CC ) |
| 65 | ssid | |- CC C_ CC |
|
| 66 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) = ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) |
|
| 67 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 68 | 67 | restid | |- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
| 69 | 62 68 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
| 70 | 69 | eqcomi | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 71 | 61 66 70 | cncfcn | |- ( ( ( K [,] L ) C_ CC /\ CC C_ CC ) -> ( ( K [,] L ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 72 | 64 65 71 | sylancl | |- ( ph -> ( ( K [,] L ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 73 | reex | |- RR e. _V |
|
| 74 | 73 | a1i | |- ( ph -> RR e. _V ) |
| 75 | restabs | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( K [,] L ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( K [,] L ) ) = ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) |
|
| 76 | 63 23 74 75 | syl3anc | |- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( K [,] L ) ) = ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) |
| 77 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 78 | 77 | eqcomi | |- ( ( TopOpen ` CCfld ) |`t RR ) = ( topGen ` ran (,) ) |
| 79 | 78 | a1i | |- ( ph -> ( ( TopOpen ` CCfld ) |`t RR ) = ( topGen ` ran (,) ) ) |
| 80 | 79 | oveq1d | |- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( K [,] L ) ) = ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) ) |
| 81 | 76 80 | eqtr3d | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) = ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) ) |
| 82 | 81 | oveq1d | |- ( ph -> ( ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) = ( ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 83 | 72 82 | eqtrd | |- ( ph -> ( ( K [,] L ) -cn-> CC ) = ( ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 84 | 8 83 | eleqtrd | |- ( ph -> F e. ( ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 85 | 58 59 60 2 9 10 11 63 84 | icccncfext | |- ( ph -> ( G e. ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) /\ ( G |` ( K [,] L ) ) = F ) ) |
| 86 | 85 | simpld | |- ( ph -> G e. ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) ) |
| 87 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 88 | eqid | |- U. ( ( TopOpen ` CCfld ) |`t ran F ) = U. ( ( TopOpen ` CCfld ) |`t ran F ) |
|
| 89 | 87 88 | cnf | |- ( G e. ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) -> G : RR --> U. ( ( TopOpen ` CCfld ) |`t ran F ) ) |
| 90 | 86 89 | syl | |- ( ph -> G : RR --> U. ( ( TopOpen ` CCfld ) |`t ran F ) ) |
| 91 | 50 | feq2d | |- ( ph -> ( G : RR --> U. ( ( TopOpen ` CCfld ) |`t ran F ) <-> G : ( -oo (,) +oo ) --> U. ( ( TopOpen ` CCfld ) |`t ran F ) ) ) |
| 92 | 90 91 | mpbid | |- ( ph -> G : ( -oo (,) +oo ) --> U. ( ( TopOpen ` CCfld ) |`t ran F ) ) |
| 93 | 92 | feqmptd | |- ( ph -> G = ( w e. ( -oo (,) +oo ) |-> ( G ` w ) ) ) |
| 94 | 32 | frnd | |- ( ph -> ran F C_ CC ) |
| 95 | cncfss | |- ( ( ran F C_ CC /\ CC C_ CC ) -> ( ( -oo (,) +oo ) -cn-> ran F ) C_ ( ( -oo (,) +oo ) -cn-> CC ) ) |
|
| 96 | 94 65 95 | sylancl | |- ( ph -> ( ( -oo (,) +oo ) -cn-> ran F ) C_ ( ( -oo (,) +oo ) -cn-> CC ) ) |
| 97 | 49 | oveq2i | |- ( ( TopOpen ` CCfld ) |`t RR ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,) +oo ) ) |
| 98 | 77 97 | eqtri | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,) +oo ) ) |
| 99 | eqid | |- ( ( TopOpen ` CCfld ) |`t ran F ) = ( ( TopOpen ` CCfld ) |`t ran F ) |
|
| 100 | 61 98 99 | cncfcn | |- ( ( ( -oo (,) +oo ) C_ CC /\ ran F C_ CC ) -> ( ( -oo (,) +oo ) -cn-> ran F ) = ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) ) |
| 101 | 53 94 100 | syl2anc | |- ( ph -> ( ( -oo (,) +oo ) -cn-> ran F ) = ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) ) |
| 102 | 101 | eqcomd | |- ( ph -> ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) = ( ( -oo (,) +oo ) -cn-> ran F ) ) |
| 103 | 86 102 | eleqtrd | |- ( ph -> G e. ( ( -oo (,) +oo ) -cn-> ran F ) ) |
| 104 | 96 103 | sseldd | |- ( ph -> G e. ( ( -oo (,) +oo ) -cn-> CC ) ) |
| 105 | 93 104 | eqeltrrd | |- ( ph -> ( w e. ( -oo (,) +oo ) |-> ( G ` w ) ) e. ( ( -oo (,) +oo ) -cn-> CC ) ) |
| 106 | fveq2 | |- ( w = A -> ( G ` w ) = ( G ` A ) ) |
|
| 107 | 3 4 5 45 47 56 7 105 12 106 14 15 | itgsubst | |- ( ph -> S_ [ K -> L ] ( G ` w ) _d w = S_ [ X -> Y ] ( ( G ` A ) x. B ) _d x ) |
| 108 | 22 43 107 | 3eqtr3a | |- ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( ( G ` A ) x. B ) _d x ) |
| 109 | 2 | a1i | |- ( ( ph /\ x e. ( X (,) Y ) ) -> G = ( u e. RR |-> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) ) ) |
| 110 | simpr | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> u = A ) |
|
| 111 | 61 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 112 | 3 4 | iccssred | |- ( ph -> ( X [,] Y ) C_ RR ) |
| 113 | 112 52 | sstrdi | |- ( ph -> ( X [,] Y ) C_ CC ) |
| 114 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( X [,] Y ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) e. ( TopOn ` ( X [,] Y ) ) ) |
|
| 115 | 111 113 114 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) e. ( TopOn ` ( X [,] Y ) ) ) |
| 116 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( K [,] L ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) e. ( TopOn ` ( K [,] L ) ) ) |
|
| 117 | 111 64 116 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) e. ( TopOn ` ( K [,] L ) ) ) |
| 118 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) = ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) |
|
| 119 | 61 118 66 | cncfcn | |- ( ( ( X [,] Y ) C_ CC /\ ( K [,] L ) C_ CC ) -> ( ( X [,] Y ) -cn-> ( K [,] L ) ) = ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) Cn ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) ) |
| 120 | 113 64 119 | syl2anc | |- ( ph -> ( ( X [,] Y ) -cn-> ( K [,] L ) ) = ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) Cn ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) ) |
| 121 | 6 120 | eleqtrd | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) Cn ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) ) |
| 122 | cnf2 | |- ( ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) e. ( TopOn ` ( X [,] Y ) ) /\ ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) e. ( TopOn ` ( K [,] L ) ) /\ ( x e. ( X [,] Y ) |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) Cn ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
|
| 123 | 115 117 121 122 | syl3anc | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
| 124 | 123 | adantr | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
| 125 | eqid | |- ( x e. ( X [,] Y ) |-> A ) = ( x e. ( X [,] Y ) |-> A ) |
|
| 126 | 125 | fmpt | |- ( A. x e. ( X [,] Y ) A e. ( K [,] L ) <-> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
| 127 | 124 126 | sylibr | |- ( ( ph /\ x e. ( X (,) Y ) ) -> A. x e. ( X [,] Y ) A e. ( K [,] L ) ) |
| 128 | ioossicc | |- ( X (,) Y ) C_ ( X [,] Y ) |
|
| 129 | 128 | sseli | |- ( x e. ( X (,) Y ) -> x e. ( X [,] Y ) ) |
| 130 | 129 | adantl | |- ( ( ph /\ x e. ( X (,) Y ) ) -> x e. ( X [,] Y ) ) |
| 131 | rsp | |- ( A. x e. ( X [,] Y ) A e. ( K [,] L ) -> ( x e. ( X [,] Y ) -> A e. ( K [,] L ) ) ) |
|
| 132 | 127 130 131 | sylc | |- ( ( ph /\ x e. ( X (,) Y ) ) -> A e. ( K [,] L ) ) |
| 133 | 132 | adantr | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> A e. ( K [,] L ) ) |
| 134 | 110 133 | eqeltrd | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> u e. ( K [,] L ) ) |
| 135 | 134 | iftrued | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) = ( F ` u ) ) |
| 136 | simpll | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> ph ) |
|
| 137 | 136 134 34 | syl2anc | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> C e. CC ) |
| 138 | 134 137 36 | syl2anc | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> ( F ` u ) = C ) |
| 139 | 13 | adantl | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> C = E ) |
| 140 | 135 138 139 | 3eqtrd | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) = E ) |
| 141 | 23 | adantr | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( K [,] L ) C_ RR ) |
| 142 | 141 132 | sseldd | |- ( ( ph /\ x e. ( X (,) Y ) ) -> A e. RR ) |
| 143 | elex | |- ( A e. ( K [,] L ) -> A e. _V ) |
|
| 144 | 132 143 | syl | |- ( ( ph /\ x e. ( X (,) Y ) ) -> A e. _V ) |
| 145 | isset | |- ( A e. _V <-> E. u u = A ) |
|
| 146 | 144 145 | sylib | |- ( ( ph /\ x e. ( X (,) Y ) ) -> E. u u = A ) |
| 147 | 139 137 | eqeltrrd | |- ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> E e. CC ) |
| 148 | 146 147 | exlimddv | |- ( ( ph /\ x e. ( X (,) Y ) ) -> E e. CC ) |
| 149 | 109 140 142 148 | fvmptd | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( G ` A ) = E ) |
| 150 | 149 | oveq1d | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( G ` A ) x. B ) = ( E x. B ) ) |
| 151 | 5 150 | ditgeq3d | |- ( ph -> S_ [ X -> Y ] ( ( G ` A ) x. B ) _d x = S_ [ X -> Y ] ( E x. B ) _d x ) |
| 152 | 108 151 | eqtrd | |- ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( E x. B ) _d x ) |