This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a continuous function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negcncfg.1 | |- ( ph -> ( x e. A |-> B ) e. ( A -cn-> CC ) ) |
|
| Assertion | negcncfg | |- ( ph -> ( x e. A |-> -u B ) e. ( A -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcncfg.1 | |- ( ph -> ( x e. A |-> B ) e. ( A -cn-> CC ) ) |
|
| 2 | df-neg | |- -u B = ( 0 - B ) |
|
| 3 | 2 | a1i | |- ( ( ph /\ x e. A ) -> -u B = ( 0 - B ) ) |
| 4 | 3 | mpteq2dva | |- ( ph -> ( x e. A |-> -u B ) = ( x e. A |-> ( 0 - B ) ) ) |
| 5 | eqid | |- ( x e. CC |-> 0 ) = ( x e. CC |-> 0 ) |
|
| 6 | 0cn | |- 0 e. CC |
|
| 7 | ssidd | |- ( 0 e. CC -> CC C_ CC ) |
|
| 8 | id | |- ( 0 e. CC -> 0 e. CC ) |
|
| 9 | 7 8 7 | constcncfg | |- ( 0 e. CC -> ( x e. CC |-> 0 ) e. ( CC -cn-> CC ) ) |
| 10 | 6 9 | mp1i | |- ( ph -> ( x e. CC |-> 0 ) e. ( CC -cn-> CC ) ) |
| 11 | cncfrss | |- ( ( x e. A |-> B ) e. ( A -cn-> CC ) -> A C_ CC ) |
|
| 12 | 1 11 | syl | |- ( ph -> A C_ CC ) |
| 13 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 14 | 6 | a1i | |- ( ( ph /\ x e. A ) -> 0 e. CC ) |
| 15 | 5 10 12 13 14 | cncfmptssg | |- ( ph -> ( x e. A |-> 0 ) e. ( A -cn-> CC ) ) |
| 16 | 15 1 | subcncf | |- ( ph -> ( x e. A |-> ( 0 - B ) ) e. ( A -cn-> CC ) ) |
| 17 | 4 16 | eqeltrd | |- ( ph -> ( x e. A |-> -u B ) e. ( A -cn-> CC ) ) |