This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fzgsumd.p | |- P = ( Poly1 ` R ) |
|
| coe1fzgsumd.b | |- B = ( Base ` P ) |
||
| coe1fzgsumd.r | |- ( ph -> R e. Ring ) |
||
| coe1fzgsumd.k | |- ( ph -> K e. NN0 ) |
||
| coe1fzgsumd.m | |- ( ph -> A. x e. N M e. B ) |
||
| coe1fzgsumd.n | |- ( ph -> N e. Fin ) |
||
| Assertion | coe1fzgsumd | |- ( ph -> ( ( coe1 ` ( P gsum ( x e. N |-> M ) ) ) ` K ) = ( R gsum ( x e. N |-> ( ( coe1 ` M ) ` K ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fzgsumd.p | |- P = ( Poly1 ` R ) |
|
| 2 | coe1fzgsumd.b | |- B = ( Base ` P ) |
|
| 3 | coe1fzgsumd.r | |- ( ph -> R e. Ring ) |
|
| 4 | coe1fzgsumd.k | |- ( ph -> K e. NN0 ) |
|
| 5 | coe1fzgsumd.m | |- ( ph -> A. x e. N M e. B ) |
|
| 6 | coe1fzgsumd.n | |- ( ph -> N e. Fin ) |
|
| 7 | raleq | |- ( n = (/) -> ( A. x e. n M e. B <-> A. x e. (/) M e. B ) ) |
|
| 8 | 7 | anbi2d | |- ( n = (/) -> ( ( ph /\ A. x e. n M e. B ) <-> ( ph /\ A. x e. (/) M e. B ) ) ) |
| 9 | mpteq1 | |- ( n = (/) -> ( x e. n |-> M ) = ( x e. (/) |-> M ) ) |
|
| 10 | 9 | oveq2d | |- ( n = (/) -> ( P gsum ( x e. n |-> M ) ) = ( P gsum ( x e. (/) |-> M ) ) ) |
| 11 | 10 | fveq2d | |- ( n = (/) -> ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) = ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) ) |
| 12 | 11 | fveq1d | |- ( n = (/) -> ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) ` K ) ) |
| 13 | mpteq1 | |- ( n = (/) -> ( x e. n |-> ( ( coe1 ` M ) ` K ) ) = ( x e. (/) |-> ( ( coe1 ` M ) ` K ) ) ) |
|
| 14 | 13 | oveq2d | |- ( n = (/) -> ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) = ( R gsum ( x e. (/) |-> ( ( coe1 ` M ) ` K ) ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( n = (/) -> ( ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) <-> ( ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) ` K ) = ( R gsum ( x e. (/) |-> ( ( coe1 ` M ) ` K ) ) ) ) ) |
| 16 | 8 15 | imbi12d | |- ( n = (/) -> ( ( ( ph /\ A. x e. n M e. B ) -> ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) ) <-> ( ( ph /\ A. x e. (/) M e. B ) -> ( ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) ` K ) = ( R gsum ( x e. (/) |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) |
| 17 | raleq | |- ( n = m -> ( A. x e. n M e. B <-> A. x e. m M e. B ) ) |
|
| 18 | 17 | anbi2d | |- ( n = m -> ( ( ph /\ A. x e. n M e. B ) <-> ( ph /\ A. x e. m M e. B ) ) ) |
| 19 | mpteq1 | |- ( n = m -> ( x e. n |-> M ) = ( x e. m |-> M ) ) |
|
| 20 | 19 | oveq2d | |- ( n = m -> ( P gsum ( x e. n |-> M ) ) = ( P gsum ( x e. m |-> M ) ) ) |
| 21 | 20 | fveq2d | |- ( n = m -> ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) = ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ) |
| 22 | 21 | fveq1d | |- ( n = m -> ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ` K ) ) |
| 23 | mpteq1 | |- ( n = m -> ( x e. n |-> ( ( coe1 ` M ) ` K ) ) = ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) |
|
| 24 | 23 | oveq2d | |- ( n = m -> ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) = ( R gsum ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) ) |
| 25 | 22 24 | eqeq12d | |- ( n = m -> ( ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) <-> ( ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ` K ) = ( R gsum ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) ) ) |
| 26 | 18 25 | imbi12d | |- ( n = m -> ( ( ( ph /\ A. x e. n M e. B ) -> ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) ) <-> ( ( ph /\ A. x e. m M e. B ) -> ( ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ` K ) = ( R gsum ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) |
| 27 | raleq | |- ( n = ( m u. { a } ) -> ( A. x e. n M e. B <-> A. x e. ( m u. { a } ) M e. B ) ) |
|
| 28 | 27 | anbi2d | |- ( n = ( m u. { a } ) -> ( ( ph /\ A. x e. n M e. B ) <-> ( ph /\ A. x e. ( m u. { a } ) M e. B ) ) ) |
| 29 | mpteq1 | |- ( n = ( m u. { a } ) -> ( x e. n |-> M ) = ( x e. ( m u. { a } ) |-> M ) ) |
|
| 30 | 29 | oveq2d | |- ( n = ( m u. { a } ) -> ( P gsum ( x e. n |-> M ) ) = ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) |
| 31 | 30 | fveq2d | |- ( n = ( m u. { a } ) -> ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) = ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ) |
| 32 | 31 | fveq1d | |- ( n = ( m u. { a } ) -> ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ` K ) ) |
| 33 | mpteq1 | |- ( n = ( m u. { a } ) -> ( x e. n |-> ( ( coe1 ` M ) ` K ) ) = ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) |
|
| 34 | 33 | oveq2d | |- ( n = ( m u. { a } ) -> ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) = ( R gsum ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) ) |
| 35 | 32 34 | eqeq12d | |- ( n = ( m u. { a } ) -> ( ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) <-> ( ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ` K ) = ( R gsum ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) ) ) |
| 36 | 28 35 | imbi12d | |- ( n = ( m u. { a } ) -> ( ( ( ph /\ A. x e. n M e. B ) -> ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) ) <-> ( ( ph /\ A. x e. ( m u. { a } ) M e. B ) -> ( ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ` K ) = ( R gsum ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) |
| 37 | raleq | |- ( n = N -> ( A. x e. n M e. B <-> A. x e. N M e. B ) ) |
|
| 38 | 37 | anbi2d | |- ( n = N -> ( ( ph /\ A. x e. n M e. B ) <-> ( ph /\ A. x e. N M e. B ) ) ) |
| 39 | mpteq1 | |- ( n = N -> ( x e. n |-> M ) = ( x e. N |-> M ) ) |
|
| 40 | 39 | oveq2d | |- ( n = N -> ( P gsum ( x e. n |-> M ) ) = ( P gsum ( x e. N |-> M ) ) ) |
| 41 | 40 | fveq2d | |- ( n = N -> ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) = ( coe1 ` ( P gsum ( x e. N |-> M ) ) ) ) |
| 42 | 41 | fveq1d | |- ( n = N -> ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( ( coe1 ` ( P gsum ( x e. N |-> M ) ) ) ` K ) ) |
| 43 | mpteq1 | |- ( n = N -> ( x e. n |-> ( ( coe1 ` M ) ` K ) ) = ( x e. N |-> ( ( coe1 ` M ) ` K ) ) ) |
|
| 44 | 43 | oveq2d | |- ( n = N -> ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) = ( R gsum ( x e. N |-> ( ( coe1 ` M ) ` K ) ) ) ) |
| 45 | 42 44 | eqeq12d | |- ( n = N -> ( ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) <-> ( ( coe1 ` ( P gsum ( x e. N |-> M ) ) ) ` K ) = ( R gsum ( x e. N |-> ( ( coe1 ` M ) ` K ) ) ) ) ) |
| 46 | 38 45 | imbi12d | |- ( n = N -> ( ( ( ph /\ A. x e. n M e. B ) -> ( ( coe1 ` ( P gsum ( x e. n |-> M ) ) ) ` K ) = ( R gsum ( x e. n |-> ( ( coe1 ` M ) ` K ) ) ) ) <-> ( ( ph /\ A. x e. N M e. B ) -> ( ( coe1 ` ( P gsum ( x e. N |-> M ) ) ) ` K ) = ( R gsum ( x e. N |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) |
| 47 | mpt0 | |- ( x e. (/) |-> M ) = (/) |
|
| 48 | 47 | oveq2i | |- ( P gsum ( x e. (/) |-> M ) ) = ( P gsum (/) ) |
| 49 | eqid | |- ( 0g ` P ) = ( 0g ` P ) |
|
| 50 | 49 | gsum0 | |- ( P gsum (/) ) = ( 0g ` P ) |
| 51 | 48 50 | eqtri | |- ( P gsum ( x e. (/) |-> M ) ) = ( 0g ` P ) |
| 52 | 51 | fveq2i | |- ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) = ( coe1 ` ( 0g ` P ) ) |
| 53 | 52 | a1i | |- ( ph -> ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) = ( coe1 ` ( 0g ` P ) ) ) |
| 54 | 53 | fveq1d | |- ( ph -> ( ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) ` K ) = ( ( coe1 ` ( 0g ` P ) ) ` K ) ) |
| 55 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 56 | 1 49 55 | coe1z | |- ( R e. Ring -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) |
| 57 | 3 56 | syl | |- ( ph -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) |
| 58 | 57 | fveq1d | |- ( ph -> ( ( coe1 ` ( 0g ` P ) ) ` K ) = ( ( NN0 X. { ( 0g ` R ) } ) ` K ) ) |
| 59 | fvex | |- ( 0g ` R ) e. _V |
|
| 60 | fvconst2g | |- ( ( ( 0g ` R ) e. _V /\ K e. NN0 ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` K ) = ( 0g ` R ) ) |
|
| 61 | 59 4 60 | sylancr | |- ( ph -> ( ( NN0 X. { ( 0g ` R ) } ) ` K ) = ( 0g ` R ) ) |
| 62 | 54 58 61 | 3eqtrd | |- ( ph -> ( ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) ` K ) = ( 0g ` R ) ) |
| 63 | mpt0 | |- ( x e. (/) |-> ( ( coe1 ` M ) ` K ) ) = (/) |
|
| 64 | 63 | oveq2i | |- ( R gsum ( x e. (/) |-> ( ( coe1 ` M ) ` K ) ) ) = ( R gsum (/) ) |
| 65 | 55 | gsum0 | |- ( R gsum (/) ) = ( 0g ` R ) |
| 66 | 64 65 | eqtri | |- ( R gsum ( x e. (/) |-> ( ( coe1 ` M ) ` K ) ) ) = ( 0g ` R ) |
| 67 | 62 66 | eqtr4di | |- ( ph -> ( ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) ` K ) = ( R gsum ( x e. (/) |-> ( ( coe1 ` M ) ` K ) ) ) ) |
| 68 | 67 | adantr | |- ( ( ph /\ A. x e. (/) M e. B ) -> ( ( coe1 ` ( P gsum ( x e. (/) |-> M ) ) ) ` K ) = ( R gsum ( x e. (/) |-> ( ( coe1 ` M ) ` K ) ) ) ) |
| 69 | 1 2 3 4 | coe1fzgsumdlem | |- ( ( m e. Fin /\ -. a e. m /\ ph ) -> ( ( A. x e. m M e. B -> ( ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ` K ) = ( R gsum ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) ) -> ( A. x e. ( m u. { a } ) M e. B -> ( ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ` K ) = ( R gsum ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) |
| 70 | 69 | 3expia | |- ( ( m e. Fin /\ -. a e. m ) -> ( ph -> ( ( A. x e. m M e. B -> ( ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ` K ) = ( R gsum ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) ) -> ( A. x e. ( m u. { a } ) M e. B -> ( ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ` K ) = ( R gsum ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) ) |
| 71 | 70 | a2d | |- ( ( m e. Fin /\ -. a e. m ) -> ( ( ph -> ( A. x e. m M e. B -> ( ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ` K ) = ( R gsum ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) ) ) -> ( ph -> ( A. x e. ( m u. { a } ) M e. B -> ( ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ` K ) = ( R gsum ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) ) |
| 72 | impexp | |- ( ( ( ph /\ A. x e. m M e. B ) -> ( ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ` K ) = ( R gsum ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) ) <-> ( ph -> ( A. x e. m M e. B -> ( ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ` K ) = ( R gsum ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) |
|
| 73 | impexp | |- ( ( ( ph /\ A. x e. ( m u. { a } ) M e. B ) -> ( ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ` K ) = ( R gsum ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) ) <-> ( ph -> ( A. x e. ( m u. { a } ) M e. B -> ( ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ` K ) = ( R gsum ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) |
|
| 74 | 71 72 73 | 3imtr4g | |- ( ( m e. Fin /\ -. a e. m ) -> ( ( ( ph /\ A. x e. m M e. B ) -> ( ( coe1 ` ( P gsum ( x e. m |-> M ) ) ) ` K ) = ( R gsum ( x e. m |-> ( ( coe1 ` M ) ` K ) ) ) ) -> ( ( ph /\ A. x e. ( m u. { a } ) M e. B ) -> ( ( coe1 ` ( P gsum ( x e. ( m u. { a } ) |-> M ) ) ) ` K ) = ( R gsum ( x e. ( m u. { a } ) |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) |
| 75 | 16 26 36 46 68 74 | findcard2s | |- ( N e. Fin -> ( ( ph /\ A. x e. N M e. B ) -> ( ( coe1 ` ( P gsum ( x e. N |-> M ) ) ) ` K ) = ( R gsum ( x e. N |-> ( ( coe1 ` M ) ` K ) ) ) ) ) |
| 76 | 75 | expd | |- ( N e. Fin -> ( ph -> ( A. x e. N M e. B -> ( ( coe1 ` ( P gsum ( x e. N |-> M ) ) ) ` K ) = ( R gsum ( x e. N |-> ( ( coe1 ` M ) ` K ) ) ) ) ) ) |
| 77 | 6 76 | mpcom | |- ( ph -> ( A. x e. N M e. B -> ( ( coe1 ` ( P gsum ( x e. N |-> M ) ) ) ` K ) = ( R gsum ( x e. N |-> ( ( coe1 ` M ) ` K ) ) ) ) ) |
| 78 | 5 77 | mpd | |- ( ph -> ( ( coe1 ` ( P gsum ( x e. N |-> M ) ) ) ` K ) = ( R gsum ( x e. N |-> ( ( coe1 ` M ) ` K ) ) ) ) |