This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 . (Contributed by AV, 11-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummpt1n0.0 | |- .0. = ( 0g ` G ) |
|
| gsummpt1n0.g | |- ( ph -> G e. Mnd ) |
||
| gsummpt1n0.i | |- ( ph -> I e. W ) |
||
| gsummpt1n0.x | |- ( ph -> X e. I ) |
||
| gsummpt1n0.f | |- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
||
| gsummpt1n0.a | |- ( ph -> A. n e. I A e. ( Base ` G ) ) |
||
| Assertion | gsummpt1n0 | |- ( ph -> ( G gsum F ) = [_ X / n ]_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummpt1n0.0 | |- .0. = ( 0g ` G ) |
|
| 2 | gsummpt1n0.g | |- ( ph -> G e. Mnd ) |
|
| 3 | gsummpt1n0.i | |- ( ph -> I e. W ) |
|
| 4 | gsummpt1n0.x | |- ( ph -> X e. I ) |
|
| 5 | gsummpt1n0.f | |- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
|
| 6 | gsummpt1n0.a | |- ( ph -> A. n e. I A e. ( Base ` G ) ) |
|
| 7 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 8 | 6 | r19.21bi | |- ( ( ph /\ n e. I ) -> A e. ( Base ` G ) ) |
| 9 | 7 1 | mndidcl | |- ( G e. Mnd -> .0. e. ( Base ` G ) ) |
| 10 | 2 9 | syl | |- ( ph -> .0. e. ( Base ` G ) ) |
| 11 | 10 | adantr | |- ( ( ph /\ n e. I ) -> .0. e. ( Base ` G ) ) |
| 12 | 8 11 | ifcld | |- ( ( ph /\ n e. I ) -> if ( n = X , A , .0. ) e. ( Base ` G ) ) |
| 13 | 12 5 | fmptd | |- ( ph -> F : I --> ( Base ` G ) ) |
| 14 | 5 | oveq1i | |- ( F supp .0. ) = ( ( n e. I |-> if ( n = X , A , .0. ) ) supp .0. ) |
| 15 | eldifsni | |- ( n e. ( I \ { X } ) -> n =/= X ) |
|
| 16 | 15 | adantl | |- ( ( ph /\ n e. ( I \ { X } ) ) -> n =/= X ) |
| 17 | ifnefalse | |- ( n =/= X -> if ( n = X , A , .0. ) = .0. ) |
|
| 18 | 16 17 | syl | |- ( ( ph /\ n e. ( I \ { X } ) ) -> if ( n = X , A , .0. ) = .0. ) |
| 19 | 18 3 | suppss2 | |- ( ph -> ( ( n e. I |-> if ( n = X , A , .0. ) ) supp .0. ) C_ { X } ) |
| 20 | 14 19 | eqsstrid | |- ( ph -> ( F supp .0. ) C_ { X } ) |
| 21 | 7 1 2 3 4 13 20 | gsumpt | |- ( ph -> ( G gsum F ) = ( F ` X ) ) |
| 22 | nfcv | |- F/_ y if ( n = X , A , .0. ) |
|
| 23 | nfv | |- F/ n y = X |
|
| 24 | nfcsb1v | |- F/_ n [_ y / n ]_ A |
|
| 25 | nfcv | |- F/_ n .0. |
|
| 26 | 23 24 25 | nfif | |- F/_ n if ( y = X , [_ y / n ]_ A , .0. ) |
| 27 | eqeq1 | |- ( n = y -> ( n = X <-> y = X ) ) |
|
| 28 | csbeq1a | |- ( n = y -> A = [_ y / n ]_ A ) |
|
| 29 | 27 28 | ifbieq1d | |- ( n = y -> if ( n = X , A , .0. ) = if ( y = X , [_ y / n ]_ A , .0. ) ) |
| 30 | 22 26 29 | cbvmpt | |- ( n e. I |-> if ( n = X , A , .0. ) ) = ( y e. I |-> if ( y = X , [_ y / n ]_ A , .0. ) ) |
| 31 | 5 30 | eqtri | |- F = ( y e. I |-> if ( y = X , [_ y / n ]_ A , .0. ) ) |
| 32 | iftrue | |- ( y = X -> if ( y = X , [_ y / n ]_ A , .0. ) = [_ y / n ]_ A ) |
|
| 33 | csbeq1 | |- ( y = X -> [_ y / n ]_ A = [_ X / n ]_ A ) |
|
| 34 | 32 33 | eqtrd | |- ( y = X -> if ( y = X , [_ y / n ]_ A , .0. ) = [_ X / n ]_ A ) |
| 35 | rspcsbela | |- ( ( X e. I /\ A. n e. I A e. ( Base ` G ) ) -> [_ X / n ]_ A e. ( Base ` G ) ) |
|
| 36 | 4 6 35 | syl2anc | |- ( ph -> [_ X / n ]_ A e. ( Base ` G ) ) |
| 37 | 31 34 4 36 | fvmptd3 | |- ( ph -> ( F ` X ) = [_ X / n ]_ A ) |
| 38 | 21 37 | eqtrd | |- ( ph -> ( G gsum F ) = [_ X / n ]_ A ) |