This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| coe1tm.k | |- K = ( Base ` R ) |
||
| coe1tm.p | |- P = ( Poly1 ` R ) |
||
| coe1tm.x | |- X = ( var1 ` R ) |
||
| coe1tm.m | |- .x. = ( .s ` P ) |
||
| coe1tm.n | |- N = ( mulGrp ` P ) |
||
| coe1tm.e | |- .^ = ( .g ` N ) |
||
| Assertion | coe1tm | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| 2 | coe1tm.k | |- K = ( Base ` R ) |
|
| 3 | coe1tm.p | |- P = ( Poly1 ` R ) |
|
| 4 | coe1tm.x | |- X = ( var1 ` R ) |
|
| 5 | coe1tm.m | |- .x. = ( .s ` P ) |
|
| 6 | coe1tm.n | |- N = ( mulGrp ` P ) |
|
| 7 | coe1tm.e | |- .^ = ( .g ` N ) |
|
| 8 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 9 | 2 3 4 5 6 7 8 | ply1tmcl | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( D .^ X ) ) e. ( Base ` P ) ) |
| 10 | eqid | |- ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( coe1 ` ( C .x. ( D .^ X ) ) ) |
|
| 11 | eqid | |- ( x e. NN0 |-> ( 1o X. { x } ) ) = ( x e. NN0 |-> ( 1o X. { x } ) ) |
|
| 12 | 10 8 3 11 | coe1fval2 | |- ( ( C .x. ( D .^ X ) ) e. ( Base ` P ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( ( C .x. ( D .^ X ) ) o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) ) |
| 13 | 9 12 | syl | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( ( C .x. ( D .^ X ) ) o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) ) |
| 14 | fconst6g | |- ( x e. NN0 -> ( 1o X. { x } ) : 1o --> NN0 ) |
|
| 15 | nn0ex | |- NN0 e. _V |
|
| 16 | 1oex | |- 1o e. _V |
|
| 17 | 15 16 | elmap | |- ( ( 1o X. { x } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { x } ) : 1o --> NN0 ) |
| 18 | 14 17 | sylibr | |- ( x e. NN0 -> ( 1o X. { x } ) e. ( NN0 ^m 1o ) ) |
| 19 | 18 | adantl | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> ( 1o X. { x } ) e. ( NN0 ^m 1o ) ) |
| 20 | eqidd | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( x e. NN0 |-> ( 1o X. { x } ) ) = ( x e. NN0 |-> ( 1o X. { x } ) ) ) |
|
| 21 | eqid | |- ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) = ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) |
|
| 22 | 6 8 | mgpbas | |- ( Base ` P ) = ( Base ` N ) |
| 23 | 22 | a1i | |- ( R e. Ring -> ( Base ` P ) = ( Base ` N ) ) |
| 24 | eqid | |- ( mulGrp ` ( 1o mPoly R ) ) = ( mulGrp ` ( 1o mPoly R ) ) |
|
| 25 | 3 8 | ply1bas | |- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 26 | 24 25 | mgpbas | |- ( Base ` P ) = ( Base ` ( mulGrp ` ( 1o mPoly R ) ) ) |
| 27 | 26 | a1i | |- ( R e. Ring -> ( Base ` P ) = ( Base ` ( mulGrp ` ( 1o mPoly R ) ) ) ) |
| 28 | ssv | |- ( Base ` P ) C_ _V |
|
| 29 | 28 | a1i | |- ( R e. Ring -> ( Base ` P ) C_ _V ) |
| 30 | ovexd | |- ( ( R e. Ring /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` N ) y ) e. _V ) |
|
| 31 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 32 | 6 31 | mgpplusg | |- ( .r ` P ) = ( +g ` N ) |
| 33 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 34 | 3 33 31 | ply1mulr | |- ( .r ` P ) = ( .r ` ( 1o mPoly R ) ) |
| 35 | 24 34 | mgpplusg | |- ( .r ` P ) = ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) |
| 36 | 32 35 | eqtr3i | |- ( +g ` N ) = ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) |
| 37 | 36 | a1i | |- ( R e. Ring -> ( +g ` N ) = ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ) |
| 38 | 37 | oveqdr | |- ( ( R e. Ring /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` N ) y ) = ( x ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) y ) ) |
| 39 | 7 21 23 27 29 30 38 | mulgpropd | |- ( R e. Ring -> .^ = ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ) |
| 40 | 39 | 3ad2ant1 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> .^ = ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ) |
| 41 | eqidd | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> D = D ) |
|
| 42 | 4 | vr1val | |- X = ( ( 1o mVar R ) ` (/) ) |
| 43 | 42 | a1i | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> X = ( ( 1o mVar R ) ` (/) ) ) |
| 44 | 40 41 43 | oveq123d | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( D .^ X ) = ( D ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) |
| 45 | 44 | oveq2d | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( D .^ X ) ) = ( C .x. ( D ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) ) |
| 46 | psr1baslem | |- ( NN0 ^m 1o ) = { a e. ( NN0 ^m 1o ) | ( `' a " NN ) e. Fin } |
|
| 47 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 48 | 1on | |- 1o e. On |
|
| 49 | 48 | a1i | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> 1o e. On ) |
| 50 | eqid | |- ( 1o mVar R ) = ( 1o mVar R ) |
|
| 51 | simp1 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> R e. Ring ) |
|
| 52 | 0lt1o | |- (/) e. 1o |
|
| 53 | 52 | a1i | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> (/) e. 1o ) |
| 54 | simp3 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> D e. NN0 ) |
|
| 55 | 33 46 1 47 49 24 21 50 51 53 54 | mplcoe3 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( y e. ( NN0 ^m 1o ) |-> if ( y = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , ( 1r ` R ) , .0. ) ) = ( D ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) |
| 56 | 55 | oveq2d | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( y e. ( NN0 ^m 1o ) |-> if ( y = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , ( 1r ` R ) , .0. ) ) ) = ( C .x. ( D ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) ) |
| 57 | 3 33 5 | ply1vsca | |- .x. = ( .s ` ( 1o mPoly R ) ) |
| 58 | elsni | |- ( b e. { (/) } -> b = (/) ) |
|
| 59 | df1o2 | |- 1o = { (/) } |
|
| 60 | 58 59 | eleq2s | |- ( b e. 1o -> b = (/) ) |
| 61 | 60 | iftrued | |- ( b e. 1o -> if ( b = (/) , D , 0 ) = D ) |
| 62 | 61 | adantl | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ b e. 1o ) -> if ( b = (/) , D , 0 ) = D ) |
| 63 | 62 | mpteq2dva | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( b e. 1o |-> if ( b = (/) , D , 0 ) ) = ( b e. 1o |-> D ) ) |
| 64 | fconstmpt | |- ( 1o X. { D } ) = ( b e. 1o |-> D ) |
|
| 65 | 63 64 | eqtr4di | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( b e. 1o |-> if ( b = (/) , D , 0 ) ) = ( 1o X. { D } ) ) |
| 66 | fconst6g | |- ( D e. NN0 -> ( 1o X. { D } ) : 1o --> NN0 ) |
|
| 67 | 15 16 | elmap | |- ( ( 1o X. { D } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { D } ) : 1o --> NN0 ) |
| 68 | 66 67 | sylibr | |- ( D e. NN0 -> ( 1o X. { D } ) e. ( NN0 ^m 1o ) ) |
| 69 | 68 | 3ad2ant3 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( 1o X. { D } ) e. ( NN0 ^m 1o ) ) |
| 70 | 65 69 | eqeltrd | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( b e. 1o |-> if ( b = (/) , D , 0 ) ) e. ( NN0 ^m 1o ) ) |
| 71 | simp2 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> C e. K ) |
|
| 72 | 33 57 46 47 1 2 49 51 70 71 | mplmon2 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( y e. ( NN0 ^m 1o ) |-> if ( y = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , ( 1r ` R ) , .0. ) ) ) = ( y e. ( NN0 ^m 1o ) |-> if ( y = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , C , .0. ) ) ) |
| 73 | 45 56 72 | 3eqtr2d | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( D .^ X ) ) = ( y e. ( NN0 ^m 1o ) |-> if ( y = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , C , .0. ) ) ) |
| 74 | eqeq1 | |- ( y = ( 1o X. { x } ) -> ( y = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) <-> ( 1o X. { x } ) = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) ) ) |
|
| 75 | 74 | ifbid | |- ( y = ( 1o X. { x } ) -> if ( y = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , C , .0. ) = if ( ( 1o X. { x } ) = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , C , .0. ) ) |
| 76 | 19 20 73 75 | fmptco | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( C .x. ( D .^ X ) ) o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) = ( x e. NN0 |-> if ( ( 1o X. { x } ) = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , C , .0. ) ) ) |
| 77 | 65 | adantr | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> ( b e. 1o |-> if ( b = (/) , D , 0 ) ) = ( 1o X. { D } ) ) |
| 78 | 77 | eqeq2d | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> ( ( 1o X. { x } ) = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) <-> ( 1o X. { x } ) = ( 1o X. { D } ) ) ) |
| 79 | fveq1 | |- ( ( 1o X. { x } ) = ( 1o X. { D } ) -> ( ( 1o X. { x } ) ` (/) ) = ( ( 1o X. { D } ) ` (/) ) ) |
|
| 80 | vex | |- x e. _V |
|
| 81 | 80 | fvconst2 | |- ( (/) e. 1o -> ( ( 1o X. { x } ) ` (/) ) = x ) |
| 82 | 52 81 | mp1i | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> ( ( 1o X. { x } ) ` (/) ) = x ) |
| 83 | simpl3 | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> D e. NN0 ) |
|
| 84 | fvconst2g | |- ( ( D e. NN0 /\ (/) e. 1o ) -> ( ( 1o X. { D } ) ` (/) ) = D ) |
|
| 85 | 83 52 84 | sylancl | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> ( ( 1o X. { D } ) ` (/) ) = D ) |
| 86 | 82 85 | eqeq12d | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> ( ( ( 1o X. { x } ) ` (/) ) = ( ( 1o X. { D } ) ` (/) ) <-> x = D ) ) |
| 87 | 79 86 | imbitrid | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> ( ( 1o X. { x } ) = ( 1o X. { D } ) -> x = D ) ) |
| 88 | sneq | |- ( x = D -> { x } = { D } ) |
|
| 89 | 88 | xpeq2d | |- ( x = D -> ( 1o X. { x } ) = ( 1o X. { D } ) ) |
| 90 | 87 89 | impbid1 | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> ( ( 1o X. { x } ) = ( 1o X. { D } ) <-> x = D ) ) |
| 91 | 78 90 | bitrd | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> ( ( 1o X. { x } ) = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) <-> x = D ) ) |
| 92 | 91 | ifbid | |- ( ( ( R e. Ring /\ C e. K /\ D e. NN0 ) /\ x e. NN0 ) -> if ( ( 1o X. { x } ) = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , C , .0. ) = if ( x = D , C , .0. ) ) |
| 93 | 92 | mpteq2dva | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( x e. NN0 |-> if ( ( 1o X. { x } ) = ( b e. 1o |-> if ( b = (/) , D , 0 ) ) , C , .0. ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) |
| 94 | 13 76 93 | 3eqtrd | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) |