This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1tmcl.k | |- K = ( Base ` R ) |
|
| ply1tmcl.p | |- P = ( Poly1 ` R ) |
||
| ply1tmcl.x | |- X = ( var1 ` R ) |
||
| ply1tmcl.m | |- .x. = ( .s ` P ) |
||
| ply1tmcl.n | |- N = ( mulGrp ` P ) |
||
| ply1tmcl.e | |- .^ = ( .g ` N ) |
||
| ply1tmcl.b | |- B = ( Base ` P ) |
||
| Assertion | ply1tmcl | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( D .^ X ) ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1tmcl.k | |- K = ( Base ` R ) |
|
| 2 | ply1tmcl.p | |- P = ( Poly1 ` R ) |
|
| 3 | ply1tmcl.x | |- X = ( var1 ` R ) |
|
| 4 | ply1tmcl.m | |- .x. = ( .s ` P ) |
|
| 5 | ply1tmcl.n | |- N = ( mulGrp ` P ) |
|
| 6 | ply1tmcl.e | |- .^ = ( .g ` N ) |
|
| 7 | ply1tmcl.b | |- B = ( Base ` P ) |
|
| 8 | 2 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 9 | 8 | 3ad2ant1 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> P e. LMod ) |
| 10 | simp2 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> C e. K ) |
|
| 11 | 2 3 5 6 7 | ply1moncl | |- ( ( R e. Ring /\ D e. NN0 ) -> ( D .^ X ) e. B ) |
| 12 | 11 | 3adant2 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( D .^ X ) e. B ) |
| 13 | 2 | ply1sca2 | |- ( _I ` R ) = ( Scalar ` P ) |
| 14 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 15 | 14 1 | strfvi | |- K = ( Base ` ( _I ` R ) ) |
| 16 | 7 13 4 15 | lmodvscl | |- ( ( P e. LMod /\ C e. K /\ ( D .^ X ) e. B ) -> ( C .x. ( D .^ X ) ) e. B ) |
| 17 | 9 10 12 16 | syl3anc | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( D .^ X ) ) e. B ) |