This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppmapnn0ub | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( F finSupp Z -> E. m e. NN0 A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( F e. ( R ^m NN0 ) /\ Z e. V ) /\ F finSupp Z ) -> F finSupp Z ) |
|
| 2 | 1 | fsuppimpd | |- ( ( ( F e. ( R ^m NN0 ) /\ Z e. V ) /\ F finSupp Z ) -> ( F supp Z ) e. Fin ) |
| 3 | 2 | ex | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( F finSupp Z -> ( F supp Z ) e. Fin ) ) |
| 4 | elmapfn | |- ( F e. ( R ^m NN0 ) -> F Fn NN0 ) |
|
| 5 | 4 | adantr | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> F Fn NN0 ) |
| 6 | nn0ex | |- NN0 e. _V |
|
| 7 | 6 | a1i | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> NN0 e. _V ) |
| 8 | simpr | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> Z e. V ) |
|
| 9 | suppvalfn | |- ( ( F Fn NN0 /\ NN0 e. _V /\ Z e. V ) -> ( F supp Z ) = { x e. NN0 | ( F ` x ) =/= Z } ) |
|
| 10 | 5 7 8 9 | syl3anc | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( F supp Z ) = { x e. NN0 | ( F ` x ) =/= Z } ) |
| 11 | 10 | eleq1d | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( ( F supp Z ) e. Fin <-> { x e. NN0 | ( F ` x ) =/= Z } e. Fin ) ) |
| 12 | rabssnn0fi | |- ( { x e. NN0 | ( F ` x ) =/= Z } e. Fin <-> E. m e. NN0 A. x e. NN0 ( m < x -> -. ( F ` x ) =/= Z ) ) |
|
| 13 | nne | |- ( -. ( F ` x ) =/= Z <-> ( F ` x ) = Z ) |
|
| 14 | 13 | imbi2i | |- ( ( m < x -> -. ( F ` x ) =/= Z ) <-> ( m < x -> ( F ` x ) = Z ) ) |
| 15 | 14 | ralbii | |- ( A. x e. NN0 ( m < x -> -. ( F ` x ) =/= Z ) <-> A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) |
| 16 | 15 | rexbii | |- ( E. m e. NN0 A. x e. NN0 ( m < x -> -. ( F ` x ) =/= Z ) <-> E. m e. NN0 A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) |
| 17 | 12 16 | sylbb | |- ( { x e. NN0 | ( F ` x ) =/= Z } e. Fin -> E. m e. NN0 A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) |
| 18 | 11 17 | biimtrdi | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( ( F supp Z ) e. Fin -> E. m e. NN0 A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) ) |
| 19 | 3 18 | syld | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( F finSupp Z -> E. m e. NN0 A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) ) |