This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifbi | |- ( ( ph <-> ps ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi3 | |- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) ) |
|
| 2 | iftrue | |- ( ph -> if ( ph , A , B ) = A ) |
|
| 3 | iftrue | |- ( ps -> if ( ps , A , B ) = A ) |
|
| 4 | 3 | eqcomd | |- ( ps -> A = if ( ps , A , B ) ) |
| 5 | 2 4 | sylan9eq | |- ( ( ph /\ ps ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |
| 6 | iffalse | |- ( -. ph -> if ( ph , A , B ) = B ) |
|
| 7 | iffalse | |- ( -. ps -> if ( ps , A , B ) = B ) |
|
| 8 | 7 | eqcomd | |- ( -. ps -> B = if ( ps , A , B ) ) |
| 9 | 6 8 | sylan9eq | |- ( ( -. ph /\ -. ps ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |
| 10 | 5 9 | jaoi | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |
| 11 | 1 10 | sylbi | |- ( ( ph <-> ps ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |