This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgim.b | |- B = ( Base ` R ) |
|
| isgim.c | |- C = ( Base ` S ) |
||
| Assertion | isgim | |- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgim.b | |- B = ( Base ` R ) |
|
| 2 | isgim.c | |- C = ( Base ` S ) |
|
| 3 | df-3an | |- ( ( R e. Grp /\ S e. Grp /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) <-> ( ( R e. Grp /\ S e. Grp ) /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) ) |
|
| 4 | df-gim | |- GrpIso = ( a e. Grp , b e. Grp |-> { c e. ( a GrpHom b ) | c : ( Base ` a ) -1-1-onto-> ( Base ` b ) } ) |
|
| 5 | ovex | |- ( a GrpHom b ) e. _V |
|
| 6 | 5 | rabex | |- { c e. ( a GrpHom b ) | c : ( Base ` a ) -1-1-onto-> ( Base ` b ) } e. _V |
| 7 | oveq12 | |- ( ( a = R /\ b = S ) -> ( a GrpHom b ) = ( R GrpHom S ) ) |
|
| 8 | fveq2 | |- ( a = R -> ( Base ` a ) = ( Base ` R ) ) |
|
| 9 | 8 1 | eqtr4di | |- ( a = R -> ( Base ` a ) = B ) |
| 10 | fveq2 | |- ( b = S -> ( Base ` b ) = ( Base ` S ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( b = S -> ( Base ` b ) = C ) |
| 12 | f1oeq23 | |- ( ( ( Base ` a ) = B /\ ( Base ` b ) = C ) -> ( c : ( Base ` a ) -1-1-onto-> ( Base ` b ) <-> c : B -1-1-onto-> C ) ) |
|
| 13 | 9 11 12 | syl2an | |- ( ( a = R /\ b = S ) -> ( c : ( Base ` a ) -1-1-onto-> ( Base ` b ) <-> c : B -1-1-onto-> C ) ) |
| 14 | 7 13 | rabeqbidv | |- ( ( a = R /\ b = S ) -> { c e. ( a GrpHom b ) | c : ( Base ` a ) -1-1-onto-> ( Base ` b ) } = { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) |
| 15 | 4 6 14 | elovmpo | |- ( F e. ( R GrpIso S ) <-> ( R e. Grp /\ S e. Grp /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) ) |
| 16 | ghmgrp1 | |- ( F e. ( R GrpHom S ) -> R e. Grp ) |
|
| 17 | ghmgrp2 | |- ( F e. ( R GrpHom S ) -> S e. Grp ) |
|
| 18 | 16 17 | jca | |- ( F e. ( R GrpHom S ) -> ( R e. Grp /\ S e. Grp ) ) |
| 19 | 18 | adantr | |- ( ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) -> ( R e. Grp /\ S e. Grp ) ) |
| 20 | 19 | pm4.71ri | |- ( ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) <-> ( ( R e. Grp /\ S e. Grp ) /\ ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) ) |
| 21 | f1oeq1 | |- ( c = F -> ( c : B -1-1-onto-> C <-> F : B -1-1-onto-> C ) ) |
|
| 22 | 21 | elrab | |- ( F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } <-> ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) |
| 23 | 22 | anbi2i | |- ( ( ( R e. Grp /\ S e. Grp ) /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) <-> ( ( R e. Grp /\ S e. Grp ) /\ ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) ) |
| 24 | 20 23 | bitr4i | |- ( ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) <-> ( ( R e. Grp /\ S e. Grp ) /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) ) |
| 25 | 3 15 24 | 3bitr4i | |- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) |