This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmid.y | |- Y = ( 0g ` S ) |
|
| ghmid.z | |- .0. = ( 0g ` T ) |
||
| Assertion | ghmid | |- ( F e. ( S GrpHom T ) -> ( F ` Y ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmid.y | |- Y = ( 0g ` S ) |
|
| 2 | ghmid.z | |- .0. = ( 0g ` T ) |
|
| 3 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 4 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 5 | 4 1 | grpidcl | |- ( S e. Grp -> Y e. ( Base ` S ) ) |
| 6 | 3 5 | syl | |- ( F e. ( S GrpHom T ) -> Y e. ( Base ` S ) ) |
| 7 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 8 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 9 | 4 7 8 | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ Y e. ( Base ` S ) /\ Y e. ( Base ` S ) ) -> ( F ` ( Y ( +g ` S ) Y ) ) = ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) ) |
| 10 | 6 6 9 | mpd3an23 | |- ( F e. ( S GrpHom T ) -> ( F ` ( Y ( +g ` S ) Y ) ) = ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) ) |
| 11 | 4 7 1 | grplid | |- ( ( S e. Grp /\ Y e. ( Base ` S ) ) -> ( Y ( +g ` S ) Y ) = Y ) |
| 12 | 3 6 11 | syl2anc | |- ( F e. ( S GrpHom T ) -> ( Y ( +g ` S ) Y ) = Y ) |
| 13 | 12 | fveq2d | |- ( F e. ( S GrpHom T ) -> ( F ` ( Y ( +g ` S ) Y ) ) = ( F ` Y ) ) |
| 14 | 10 13 | eqtr3d | |- ( F e. ( S GrpHom T ) -> ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) = ( F ` Y ) ) |
| 15 | ghmgrp2 | |- ( F e. ( S GrpHom T ) -> T e. Grp ) |
|
| 16 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 17 | 4 16 | ghmf | |- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 18 | 17 6 | ffvelcdmd | |- ( F e. ( S GrpHom T ) -> ( F ` Y ) e. ( Base ` T ) ) |
| 19 | 16 8 2 | grpid | |- ( ( T e. Grp /\ ( F ` Y ) e. ( Base ` T ) ) -> ( ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) = ( F ` Y ) <-> .0. = ( F ` Y ) ) ) |
| 20 | 15 18 19 | syl2anc | |- ( F e. ( S GrpHom T ) -> ( ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) = ( F ` Y ) <-> .0. = ( F ` Y ) ) ) |
| 21 | 14 20 | mpbid | |- ( F e. ( S GrpHom T ) -> .0. = ( F ` Y ) ) |
| 22 | 21 | eqcomd | |- ( F e. ( S GrpHom T ) -> ( F ` Y ) = .0. ) |