This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If Y is a normal subgroup of G , then H = G / Y is a group, called the quotient of G by Y . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| Assertion | qusgrp | |- ( S e. ( NrmSGrp ` G ) -> H e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| 2 | 1 | a1i | |- ( S e. ( NrmSGrp ` G ) -> H = ( G /s ( G ~QG S ) ) ) |
| 3 | eqidd | |- ( S e. ( NrmSGrp ` G ) -> ( Base ` G ) = ( Base ` G ) ) |
|
| 4 | eqidd | |- ( S e. ( NrmSGrp ` G ) -> ( +g ` G ) = ( +g ` G ) ) |
|
| 5 | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
|
| 6 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 7 | eqid | |- ( G ~QG S ) = ( G ~QG S ) |
|
| 8 | 6 7 | eqger | |- ( S e. ( SubGrp ` G ) -> ( G ~QG S ) Er ( Base ` G ) ) |
| 9 | 5 8 | syl | |- ( S e. ( NrmSGrp ` G ) -> ( G ~QG S ) Er ( Base ` G ) ) |
| 10 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 11 | 5 10 | syl | |- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
| 12 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 13 | 6 7 12 | eqgcpbl | |- ( S e. ( NrmSGrp ` G ) -> ( ( a ( G ~QG S ) c /\ b ( G ~QG S ) d ) -> ( a ( +g ` G ) b ) ( G ~QG S ) ( c ( +g ` G ) d ) ) ) |
| 14 | 6 12 | grpcl | |- ( ( G e. Grp /\ u e. ( Base ` G ) /\ v e. ( Base ` G ) ) -> ( u ( +g ` G ) v ) e. ( Base ` G ) ) |
| 15 | 11 14 | syl3an1 | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) /\ v e. ( Base ` G ) ) -> ( u ( +g ` G ) v ) e. ( Base ` G ) ) |
| 16 | 9 | adantr | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( G ~QG S ) Er ( Base ` G ) ) |
| 17 | 11 | adantr | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> G e. Grp ) |
| 18 | simpr1 | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> u e. ( Base ` G ) ) |
|
| 19 | simpr2 | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> v e. ( Base ` G ) ) |
|
| 20 | 17 18 19 14 | syl3anc | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( u ( +g ` G ) v ) e. ( Base ` G ) ) |
| 21 | simpr3 | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> w e. ( Base ` G ) ) |
|
| 22 | 6 12 | grpcl | |- ( ( G e. Grp /\ ( u ( +g ` G ) v ) e. ( Base ` G ) /\ w e. ( Base ` G ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) e. ( Base ` G ) ) |
| 23 | 17 20 21 22 | syl3anc | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) e. ( Base ` G ) ) |
| 24 | 16 23 | erref | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) ( G ~QG S ) ( ( u ( +g ` G ) v ) ( +g ` G ) w ) ) |
| 25 | 6 12 | grpass | |- ( ( G e. Grp /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) = ( u ( +g ` G ) ( v ( +g ` G ) w ) ) ) |
| 26 | 11 25 | sylan | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) = ( u ( +g ` G ) ( v ( +g ` G ) w ) ) ) |
| 27 | 24 26 | breqtrd | |- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) ( G ~QG S ) ( u ( +g ` G ) ( v ( +g ` G ) w ) ) ) |
| 28 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 29 | 6 28 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 30 | 11 29 | syl | |- ( S e. ( NrmSGrp ` G ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 31 | 6 12 28 | grplid | |- ( ( G e. Grp /\ u e. ( Base ` G ) ) -> ( ( 0g ` G ) ( +g ` G ) u ) = u ) |
| 32 | 11 31 | sylan | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( 0g ` G ) ( +g ` G ) u ) = u ) |
| 33 | 9 | adantr | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( G ~QG S ) Er ( Base ` G ) ) |
| 34 | simpr | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> u e. ( Base ` G ) ) |
|
| 35 | 33 34 | erref | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> u ( G ~QG S ) u ) |
| 36 | 32 35 | eqbrtrd | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( 0g ` G ) ( +g ` G ) u ) ( G ~QG S ) u ) |
| 37 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 38 | 6 37 | grpinvcl | |- ( ( G e. Grp /\ u e. ( Base ` G ) ) -> ( ( invg ` G ) ` u ) e. ( Base ` G ) ) |
| 39 | 11 38 | sylan | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( invg ` G ) ` u ) e. ( Base ` G ) ) |
| 40 | 6 12 28 37 | grplinv | |- ( ( G e. Grp /\ u e. ( Base ` G ) ) -> ( ( ( invg ` G ) ` u ) ( +g ` G ) u ) = ( 0g ` G ) ) |
| 41 | 11 40 | sylan | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( ( invg ` G ) ` u ) ( +g ` G ) u ) = ( 0g ` G ) ) |
| 42 | 30 | adantr | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 43 | 33 42 | erref | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( 0g ` G ) ( G ~QG S ) ( 0g ` G ) ) |
| 44 | 41 43 | eqbrtrd | |- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( ( invg ` G ) ` u ) ( +g ` G ) u ) ( G ~QG S ) ( 0g ` G ) ) |
| 45 | 2 3 4 9 11 13 15 27 30 36 39 44 | qusgrp2 | |- ( S e. ( NrmSGrp ` G ) -> ( H e. Grp /\ [ ( 0g ` G ) ] ( G ~QG S ) = ( 0g ` H ) ) ) |
| 46 | 45 | simpld | |- ( S e. ( NrmSGrp ` G ) -> H e. Grp ) |