This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvelrnb | |- ( F Fn A -> ( B e. ran F <-> E. x e. A ( F ` x ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrnfv | |- ( F Fn A -> ran F = { y | E. x e. A y = ( F ` x ) } ) |
|
| 2 | 1 | eleq2d | |- ( F Fn A -> ( B e. ran F <-> B e. { y | E. x e. A y = ( F ` x ) } ) ) |
| 3 | fvex | |- ( F ` x ) e. _V |
|
| 4 | eleq1 | |- ( ( F ` x ) = B -> ( ( F ` x ) e. _V <-> B e. _V ) ) |
|
| 5 | 3 4 | mpbii | |- ( ( F ` x ) = B -> B e. _V ) |
| 6 | 5 | rexlimivw | |- ( E. x e. A ( F ` x ) = B -> B e. _V ) |
| 7 | eqeq1 | |- ( y = B -> ( y = ( F ` x ) <-> B = ( F ` x ) ) ) |
|
| 8 | eqcom | |- ( B = ( F ` x ) <-> ( F ` x ) = B ) |
|
| 9 | 7 8 | bitrdi | |- ( y = B -> ( y = ( F ` x ) <-> ( F ` x ) = B ) ) |
| 10 | 9 | rexbidv | |- ( y = B -> ( E. x e. A y = ( F ` x ) <-> E. x e. A ( F ` x ) = B ) ) |
| 11 | 6 10 | elab3 | |- ( B e. { y | E. x e. A y = ( F ` x ) } <-> E. x e. A ( F ` x ) = B ) |
| 12 | 2 11 | bitrdi | |- ( F Fn A -> ( B e. ran F <-> E. x e. A ( F ` x ) = B ) ) |