This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ghmqusker . (Contributed by Thierry Arnoux, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
||
| ghmqusker.k | |- K = ( `' F " { .0. } ) |
||
| ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
||
| ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
||
| ghmquskerlem2.y | |- ( ph -> Y e. ( Base ` Q ) ) |
||
| Assertion | ghmquskerlem2 | |- ( ph -> E. x e. Y ( J ` Y ) = ( F ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| 2 | ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
|
| 3 | ghmqusker.k | |- K = ( `' F " { .0. } ) |
|
| 4 | ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
|
| 5 | ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
|
| 6 | ghmquskerlem2.y | |- ( ph -> Y e. ( Base ` Q ) ) |
|
| 7 | 4 | a1i | |- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
| 8 | eqidd | |- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
|
| 9 | ovexd | |- ( ph -> ( G ~QG K ) e. _V ) |
|
| 10 | ghmgrp1 | |- ( F e. ( G GrpHom H ) -> G e. Grp ) |
|
| 11 | 2 10 | syl | |- ( ph -> G e. Grp ) |
| 12 | 7 8 9 11 | qusbas | |- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 13 | 6 12 | eleqtrrd | |- ( ph -> Y e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 14 | elqsg | |- ( Y e. ( Base ` Q ) -> ( Y e. ( ( Base ` G ) /. ( G ~QG K ) ) <-> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG K ) ) ) |
|
| 15 | 14 | biimpa | |- ( ( Y e. ( Base ` Q ) /\ Y e. ( ( Base ` G ) /. ( G ~QG K ) ) ) -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG K ) ) |
| 16 | 6 13 15 | syl2anc | |- ( ph -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG K ) ) |
| 17 | 1 | ghmker | |- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
| 18 | nsgsubg | |- ( ( `' F " { .0. } ) e. ( NrmSGrp ` G ) -> ( `' F " { .0. } ) e. ( SubGrp ` G ) ) |
|
| 19 | 2 17 18 | 3syl | |- ( ph -> ( `' F " { .0. } ) e. ( SubGrp ` G ) ) |
| 20 | 3 19 | eqeltrid | |- ( ph -> K e. ( SubGrp ` G ) ) |
| 21 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 22 | eqid | |- ( G ~QG K ) = ( G ~QG K ) |
|
| 23 | 21 22 | eqger | |- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
| 24 | 20 23 | syl | |- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
| 25 | 24 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( G ~QG K ) Er ( Base ` G ) ) |
| 26 | simplr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> x e. ( Base ` G ) ) |
|
| 27 | ecref | |- ( ( ( G ~QG K ) Er ( Base ` G ) /\ x e. ( Base ` G ) ) -> x e. [ x ] ( G ~QG K ) ) |
|
| 28 | 25 26 27 | syl2anc | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> x e. [ x ] ( G ~QG K ) ) |
| 29 | simpr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> Y = [ x ] ( G ~QG K ) ) |
|
| 30 | 28 29 | eleqtrrd | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> x e. Y ) |
| 31 | 29 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( J ` Y ) = ( J ` [ x ] ( G ~QG K ) ) ) |
| 32 | 2 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> F e. ( G GrpHom H ) ) |
| 33 | 1 32 3 4 5 26 | ghmquskerlem1 | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( J ` [ x ] ( G ~QG K ) ) = ( F ` x ) ) |
| 34 | 31 33 | eqtrd | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( J ` Y ) = ( F ` x ) ) |
| 35 | 30 34 | jca | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) |
| 36 | 35 | expl | |- ( ph -> ( ( x e. ( Base ` G ) /\ Y = [ x ] ( G ~QG K ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) ) |
| 37 | 36 | reximdv2 | |- ( ph -> ( E. x e. ( Base ` G ) Y = [ x ] ( G ~QG K ) -> E. x e. Y ( J ` Y ) = ( F ` x ) ) ) |
| 38 | 16 37 | mpd | |- ( ph -> E. x e. Y ( J ` Y ) = ( F ` x ) ) |