This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ghmqusker . (Contributed by Thierry Arnoux, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
||
| ghmqusker.k | |- K = ( `' F " { .0. } ) |
||
| ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
||
| ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
||
| ghmquskerlem1.x | |- ( ph -> X e. ( Base ` G ) ) |
||
| Assertion | ghmquskerlem1 | |- ( ph -> ( J ` [ X ] ( G ~QG K ) ) = ( F ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| 2 | ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
|
| 3 | ghmqusker.k | |- K = ( `' F " { .0. } ) |
|
| 4 | ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
|
| 5 | ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
|
| 6 | ghmquskerlem1.x | |- ( ph -> X e. ( Base ` G ) ) |
|
| 7 | imaeq2 | |- ( q = [ X ] ( G ~QG K ) -> ( F " q ) = ( F " [ X ] ( G ~QG K ) ) ) |
|
| 8 | 7 | unieqd | |- ( q = [ X ] ( G ~QG K ) -> U. ( F " q ) = U. ( F " [ X ] ( G ~QG K ) ) ) |
| 9 | ovex | |- ( G ~QG K ) e. _V |
|
| 10 | 9 | ecelqsi | |- ( X e. ( Base ` G ) -> [ X ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 11 | 6 10 | syl | |- ( ph -> [ X ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 12 | 4 | a1i | |- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
| 13 | eqidd | |- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
|
| 14 | ovexd | |- ( ph -> ( G ~QG K ) e. _V ) |
|
| 15 | ghmgrp1 | |- ( F e. ( G GrpHom H ) -> G e. Grp ) |
|
| 16 | 2 15 | syl | |- ( ph -> G e. Grp ) |
| 17 | 12 13 14 16 | qusbas | |- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 18 | 11 17 | eleqtrd | |- ( ph -> [ X ] ( G ~QG K ) e. ( Base ` Q ) ) |
| 19 | 2 | imaexd | |- ( ph -> ( F " [ X ] ( G ~QG K ) ) e. _V ) |
| 20 | 19 | uniexd | |- ( ph -> U. ( F " [ X ] ( G ~QG K ) ) e. _V ) |
| 21 | 5 8 18 20 | fvmptd3 | |- ( ph -> ( J ` [ X ] ( G ~QG K ) ) = U. ( F " [ X ] ( G ~QG K ) ) ) |
| 22 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 23 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 24 | 22 23 | ghmf | |- ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 25 | 2 24 | syl | |- ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 26 | 25 | ffnd | |- ( ph -> F Fn ( Base ` G ) ) |
| 27 | 1 | ghmker | |- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
| 28 | 2 27 | syl | |- ( ph -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
| 29 | 3 28 | eqeltrid | |- ( ph -> K e. ( NrmSGrp ` G ) ) |
| 30 | nsgsubg | |- ( K e. ( NrmSGrp ` G ) -> K e. ( SubGrp ` G ) ) |
|
| 31 | eqid | |- ( G ~QG K ) = ( G ~QG K ) |
|
| 32 | 22 31 | eqger | |- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
| 33 | 29 30 32 | 3syl | |- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
| 34 | 33 | ecss | |- ( ph -> [ X ] ( G ~QG K ) C_ ( Base ` G ) ) |
| 35 | 26 34 | fvelimabd | |- ( ph -> ( y e. ( F " [ X ] ( G ~QG K ) ) <-> E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y ) ) |
| 36 | simpr | |- ( ( ( ph /\ z e. [ X ] ( G ~QG K ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = y ) |
|
| 37 | 2 | adantr | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> F e. ( G GrpHom H ) ) |
| 38 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 39 | 37 15 | syl | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> G e. Grp ) |
| 40 | 6 | adantr | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> X e. ( Base ` G ) ) |
| 41 | 22 38 39 40 | grpinvcld | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( invg ` G ) ` X ) e. ( Base ` G ) ) |
| 42 | 34 | sselda | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> z e. ( Base ` G ) ) |
| 43 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 44 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 45 | 22 43 44 | ghmlin | |- ( ( F e. ( G GrpHom H ) /\ ( ( invg ` G ) ` X ) e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) |
| 46 | 37 41 42 45 | syl3anc | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) |
| 47 | 26 | adantr | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> F Fn ( Base ` G ) ) |
| 48 | 22 | subgss | |- ( K e. ( SubGrp ` G ) -> K C_ ( Base ` G ) ) |
| 49 | 29 30 48 | 3syl | |- ( ph -> K C_ ( Base ` G ) ) |
| 50 | 49 | adantr | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> K C_ ( Base ` G ) ) |
| 51 | vex | |- z e. _V |
|
| 52 | elecg | |- ( ( z e. _V /\ X e. ( Base ` G ) ) -> ( z e. [ X ] ( G ~QG K ) <-> X ( G ~QG K ) z ) ) |
|
| 53 | 51 52 | mpan | |- ( X e. ( Base ` G ) -> ( z e. [ X ] ( G ~QG K ) <-> X ( G ~QG K ) z ) ) |
| 54 | 53 | biimpa | |- ( ( X e. ( Base ` G ) /\ z e. [ X ] ( G ~QG K ) ) -> X ( G ~QG K ) z ) |
| 55 | 6 54 | sylan | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> X ( G ~QG K ) z ) |
| 56 | 22 38 43 31 | eqgval | |- ( ( G e. Grp /\ K C_ ( Base ` G ) ) -> ( X ( G ~QG K ) z <-> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) ) ) |
| 57 | 56 | biimpa | |- ( ( ( G e. Grp /\ K C_ ( Base ` G ) ) /\ X ( G ~QG K ) z ) -> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) ) |
| 58 | 57 | simp3d | |- ( ( ( G e. Grp /\ K C_ ( Base ` G ) ) /\ X ( G ~QG K ) z ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) |
| 59 | 39 50 55 58 | syl21anc | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) |
| 60 | 59 3 | eleqtrdi | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) |
| 61 | fniniseg | |- ( F Fn ( Base ` G ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) <-> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) ) |
|
| 62 | 61 | biimpa | |- ( ( F Fn ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) |
| 63 | 47 60 62 | syl2anc | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) |
| 64 | 63 | simprd | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) |
| 65 | 46 64 | eqtr3d | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = .0. ) |
| 66 | 65 | oveq2d | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) .0. ) ) |
| 67 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 68 | 22 38 67 | ghminv | |- ( ( F e. ( G GrpHom H ) /\ X e. ( Base ` G ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) ) |
| 69 | 37 40 68 | syl2anc | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) ) |
| 70 | 69 | oveq1d | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) |
| 71 | 70 | oveq2d | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) ) |
| 72 | ghmgrp2 | |- ( F e. ( G GrpHom H ) -> H e. Grp ) |
|
| 73 | 37 72 | syl | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> H e. Grp ) |
| 74 | 37 24 | syl | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 75 | 74 40 | ffvelcdmd | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` X ) e. ( Base ` H ) ) |
| 76 | 74 42 | ffvelcdmd | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` z ) e. ( Base ` H ) ) |
| 77 | 23 44 67 | grpasscan1 | |- ( ( H e. Grp /\ ( F ` X ) e. ( Base ` H ) /\ ( F ` z ) e. ( Base ` H ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) |
| 78 | 73 75 76 77 | syl3anc | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) |
| 79 | 71 78 | eqtrd | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) |
| 80 | 23 44 1 | grprid | |- ( ( H e. Grp /\ ( F ` X ) e. ( Base ` H ) ) -> ( ( F ` X ) ( +g ` H ) .0. ) = ( F ` X ) ) |
| 81 | 73 75 80 | syl2anc | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) .0. ) = ( F ` X ) ) |
| 82 | 66 79 81 | 3eqtr3d | |- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` z ) = ( F ` X ) ) |
| 83 | 82 | adantr | |- ( ( ( ph /\ z e. [ X ] ( G ~QG K ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = ( F ` X ) ) |
| 84 | 36 83 | eqtr3d | |- ( ( ( ph /\ z e. [ X ] ( G ~QG K ) ) /\ ( F ` z ) = y ) -> y = ( F ` X ) ) |
| 85 | 84 | r19.29an | |- ( ( ph /\ E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y ) -> y = ( F ` X ) ) |
| 86 | ecref | |- ( ( ( G ~QG K ) Er ( Base ` G ) /\ X e. ( Base ` G ) ) -> X e. [ X ] ( G ~QG K ) ) |
|
| 87 | 33 6 86 | syl2anc | |- ( ph -> X e. [ X ] ( G ~QG K ) ) |
| 88 | 87 | adantr | |- ( ( ph /\ y = ( F ` X ) ) -> X e. [ X ] ( G ~QG K ) ) |
| 89 | fveqeq2 | |- ( z = X -> ( ( F ` z ) = y <-> ( F ` X ) = y ) ) |
|
| 90 | 89 | adantl | |- ( ( ( ph /\ y = ( F ` X ) ) /\ z = X ) -> ( ( F ` z ) = y <-> ( F ` X ) = y ) ) |
| 91 | simpr | |- ( ( ph /\ y = ( F ` X ) ) -> y = ( F ` X ) ) |
|
| 92 | 91 | eqcomd | |- ( ( ph /\ y = ( F ` X ) ) -> ( F ` X ) = y ) |
| 93 | 88 90 92 | rspcedvd | |- ( ( ph /\ y = ( F ` X ) ) -> E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y ) |
| 94 | 85 93 | impbida | |- ( ph -> ( E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y <-> y = ( F ` X ) ) ) |
| 95 | velsn | |- ( y e. { ( F ` X ) } <-> y = ( F ` X ) ) |
|
| 96 | 94 95 | bitr4di | |- ( ph -> ( E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y <-> y e. { ( F ` X ) } ) ) |
| 97 | 35 96 | bitrd | |- ( ph -> ( y e. ( F " [ X ] ( G ~QG K ) ) <-> y e. { ( F ` X ) } ) ) |
| 98 | 97 | eqrdv | |- ( ph -> ( F " [ X ] ( G ~QG K ) ) = { ( F ` X ) } ) |
| 99 | 98 | unieqd | |- ( ph -> U. ( F " [ X ] ( G ~QG K ) ) = U. { ( F ` X ) } ) |
| 100 | fvex | |- ( F ` X ) e. _V |
|
| 101 | 100 | unisn | |- U. { ( F ` X ) } = ( F ` X ) |
| 102 | 99 101 | eqtrdi | |- ( ph -> U. ( F " [ X ] ( G ~QG K ) ) = ( F ` X ) ) |
| 103 | 21 102 | eqtrd | |- ( ph -> ( J ` [ X ] ( G ~QG K ) ) = ( F ` X ) ) |