This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping H induced by a surjective group homomorphism F from the quotient group Q over F 's kernel K is a group isomorphism. In this case, one says that F factors through Q , which is also called the factor group. (Contributed by Thierry Arnoux, 22-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
||
| ghmqusker.k | |- K = ( `' F " { .0. } ) |
||
| ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
||
| ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
||
| Assertion | ghmquskerlem3 | |- ( ph -> J e. ( Q GrpHom H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| 2 | ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
|
| 3 | ghmqusker.k | |- K = ( `' F " { .0. } ) |
|
| 4 | ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
|
| 5 | ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
|
| 6 | eqid | |- ( Base ` Q ) = ( Base ` Q ) |
|
| 7 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 8 | eqid | |- ( +g ` Q ) = ( +g ` Q ) |
|
| 9 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 10 | 1 | ghmker | |- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
| 11 | 2 10 | syl | |- ( ph -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
| 12 | 3 11 | eqeltrid | |- ( ph -> K e. ( NrmSGrp ` G ) ) |
| 13 | 4 | qusgrp | |- ( K e. ( NrmSGrp ` G ) -> Q e. Grp ) |
| 14 | 12 13 | syl | |- ( ph -> Q e. Grp ) |
| 15 | ghmrn | |- ( F e. ( G GrpHom H ) -> ran F e. ( SubGrp ` H ) ) |
|
| 16 | subgrcl | |- ( ran F e. ( SubGrp ` H ) -> H e. Grp ) |
|
| 17 | 2 15 16 | 3syl | |- ( ph -> H e. Grp ) |
| 18 | 2 | adantr | |- ( ( ph /\ q e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
| 19 | 18 | imaexd | |- ( ( ph /\ q e. ( Base ` Q ) ) -> ( F " q ) e. _V ) |
| 20 | 19 | uniexd | |- ( ( ph /\ q e. ( Base ` Q ) ) -> U. ( F " q ) e. _V ) |
| 21 | 5 | a1i | |- ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) ) |
| 22 | simpr | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) = ( F ` x ) ) |
|
| 23 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 24 | 23 7 | ghmf | |- ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 25 | 2 24 | syl | |- ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 26 | 25 | frnd | |- ( ph -> ran F C_ ( Base ` H ) ) |
| 27 | 26 | ad3antrrr | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ran F C_ ( Base ` H ) ) |
| 28 | 25 | ffnd | |- ( ph -> F Fn ( Base ` G ) ) |
| 29 | 28 | ad3antrrr | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F Fn ( Base ` G ) ) |
| 30 | 4 | a1i | |- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
| 31 | eqidd | |- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
|
| 32 | ovexd | |- ( ph -> ( G ~QG K ) e. _V ) |
|
| 33 | ghmgrp1 | |- ( F e. ( G GrpHom H ) -> G e. Grp ) |
|
| 34 | 2 33 | syl | |- ( ph -> G e. Grp ) |
| 35 | 30 31 32 34 | qusbas | |- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 36 | nsgsubg | |- ( K e. ( NrmSGrp ` G ) -> K e. ( SubGrp ` G ) ) |
|
| 37 | eqid | |- ( G ~QG K ) = ( G ~QG K ) |
|
| 38 | 23 37 | eqger | |- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
| 39 | 12 36 38 | 3syl | |- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
| 40 | 39 | qsss | |- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) C_ ~P ( Base ` G ) ) |
| 41 | 35 40 | eqsstrrd | |- ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) |
| 42 | 41 | sselda | |- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) |
| 43 | 42 | elpwid | |- ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) |
| 44 | 43 | sselda | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) -> x e. ( Base ` G ) ) |
| 45 | 44 | adantr | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> x e. ( Base ` G ) ) |
| 46 | 29 45 | fnfvelrnd | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ran F ) |
| 47 | 27 46 | sseldd | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ( Base ` H ) ) |
| 48 | 22 47 | eqeltrd | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) e. ( Base ` H ) ) |
| 49 | 2 | adantr | |- ( ( ph /\ r e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
| 50 | simpr | |- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) |
|
| 51 | 1 49 3 4 5 50 | ghmquskerlem2 | |- ( ( ph /\ r e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
| 52 | 48 51 | r19.29a | |- ( ( ph /\ r e. ( Base ` Q ) ) -> ( J ` r ) e. ( Base ` H ) ) |
| 53 | 20 21 52 | fmpt2d | |- ( ph -> J : ( Base ` Q ) --> ( Base ` H ) ) |
| 54 | 39 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( G ~QG K ) Er ( Base ` G ) ) |
| 55 | 50 | ad5antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( Base ` Q ) ) |
| 56 | 35 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 57 | 55 56 | eleqtrrd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 58 | simp-4r | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. r ) |
|
| 59 | qsel | |- ( ( ( G ~QG K ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG K ) ) /\ x e. r ) -> r = [ x ] ( G ~QG K ) ) |
|
| 60 | 54 57 58 59 | syl3anc | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r = [ x ] ( G ~QG K ) ) |
| 61 | simp-5r | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( Base ` Q ) ) |
|
| 62 | 61 56 | eleqtrrd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 63 | simplr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. s ) |
|
| 64 | qsel | |- ( ( ( G ~QG K ) Er ( Base ` G ) /\ s e. ( ( Base ` G ) /. ( G ~QG K ) ) /\ y e. s ) -> s = [ y ] ( G ~QG K ) ) |
|
| 65 | 54 62 63 64 | syl3anc | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s = [ y ] ( G ~QG K ) ) |
| 66 | 60 65 | oveq12d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = ( [ x ] ( G ~QG K ) ( +g ` Q ) [ y ] ( G ~QG K ) ) ) |
| 67 | 12 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> K e. ( NrmSGrp ` G ) ) |
| 68 | 43 | ad5antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r C_ ( Base ` G ) ) |
| 69 | 68 58 | sseldd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. ( Base ` G ) ) |
| 70 | 41 | sselda | |- ( ( ph /\ s e. ( Base ` Q ) ) -> s e. ~P ( Base ` G ) ) |
| 71 | 70 | elpwid | |- ( ( ph /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
| 72 | 71 | adantlr | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
| 73 | 72 | ad4antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s C_ ( Base ` G ) ) |
| 74 | 73 63 | sseldd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. ( Base ` G ) ) |
| 75 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 76 | 4 23 75 8 | qusadd | |- ( ( K e. ( NrmSGrp ` G ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( [ x ] ( G ~QG K ) ( +g ` Q ) [ y ] ( G ~QG K ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) |
| 77 | 67 69 74 76 | syl3anc | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( [ x ] ( G ~QG K ) ( +g ` Q ) [ y ] ( G ~QG K ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) |
| 78 | 66 77 | eqtrd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) |
| 79 | 78 | fveq2d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) ) |
| 80 | 2 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G GrpHom H ) ) |
| 81 | 80 33 | syl | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. Grp ) |
| 82 | 23 75 81 69 74 | grpcld | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
| 83 | 1 80 3 4 5 82 | ghmquskerlem1 | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) = ( F ` ( x ( +g ` G ) y ) ) ) |
| 84 | 23 75 9 | ghmlin | |- ( ( F e. ( G GrpHom H ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
| 85 | 80 69 74 84 | syl3anc | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
| 86 | 79 83 85 | 3eqtrd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
| 87 | simpllr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` r ) = ( F ` x ) ) |
|
| 88 | simpr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` s ) = ( F ` y ) ) |
|
| 89 | 87 88 | oveq12d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( J ` r ) ( +g ` H ) ( J ` s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
| 90 | 86 89 | eqtr4d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
| 91 | 2 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G GrpHom H ) ) |
| 92 | simpllr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> s e. ( Base ` Q ) ) |
|
| 93 | 1 91 3 4 5 92 | ghmquskerlem2 | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> E. y e. s ( J ` s ) = ( F ` y ) ) |
| 94 | 90 93 | r19.29a | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
| 95 | 51 | adantr | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
| 96 | 94 95 | r19.29a | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
| 97 | 96 | anasss | |- ( ( ph /\ ( r e. ( Base ` Q ) /\ s e. ( Base ` Q ) ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
| 98 | 6 7 8 9 14 17 53 97 | isghmd | |- ( ph -> J e. ( Q GrpHom H ) ) |