This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer existence from a variable x to another variable y contained in expression A . Variant of rexxfrd . (Contributed by Alexander van der Vekens, 25-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxfrd2.1 | |- ( ( ph /\ y e. C ) -> A e. B ) |
|
| ralxfrd2.2 | |- ( ( ph /\ x e. B ) -> E. y e. C x = A ) |
||
| ralxfrd2.3 | |- ( ( ph /\ y e. C /\ x = A ) -> ( ps <-> ch ) ) |
||
| Assertion | rexxfrd2 | |- ( ph -> ( E. x e. B ps <-> E. y e. C ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfrd2.1 | |- ( ( ph /\ y e. C ) -> A e. B ) |
|
| 2 | ralxfrd2.2 | |- ( ( ph /\ x e. B ) -> E. y e. C x = A ) |
|
| 3 | ralxfrd2.3 | |- ( ( ph /\ y e. C /\ x = A ) -> ( ps <-> ch ) ) |
|
| 4 | 3 | notbid | |- ( ( ph /\ y e. C /\ x = A ) -> ( -. ps <-> -. ch ) ) |
| 5 | 1 2 4 | ralxfrd2 | |- ( ph -> ( A. x e. B -. ps <-> A. y e. C -. ch ) ) |
| 6 | 5 | notbid | |- ( ph -> ( -. A. x e. B -. ps <-> -. A. y e. C -. ch ) ) |
| 7 | dfrex2 | |- ( E. x e. B ps <-> -. A. x e. B -. ps ) |
|
| 8 | dfrex2 | |- ( E. y e. C ch <-> -. A. y e. C -. ch ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ph -> ( E. x e. B ps <-> E. y e. C ch ) ) |