This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 2 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 3 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 4 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 5 | 1 2 3 4 | isghm | |- ( F e. ( S GrpHom T ) <-> ( ( S e. Grp /\ T e. Grp ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. y e. ( Base ` S ) A. x e. ( Base ` S ) ( F ` ( y ( +g ` S ) x ) ) = ( ( F ` y ) ( +g ` T ) ( F ` x ) ) ) ) ) |
| 6 | 5 | simplbi | |- ( F e. ( S GrpHom T ) -> ( S e. Grp /\ T e. Grp ) ) |
| 7 | 6 | simpld | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |