This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| qus0.p | |- .0. = ( 0g ` G ) |
||
| Assertion | qus0 | |- ( S e. ( NrmSGrp ` G ) -> [ .0. ] ( G ~QG S ) = ( 0g ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| 2 | qus0.p | |- .0. = ( 0g ` G ) |
|
| 3 | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
|
| 4 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 5 | 3 4 | syl | |- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
| 6 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 7 | 6 2 | grpidcl | |- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 8 | 5 7 | syl | |- ( S e. ( NrmSGrp ` G ) -> .0. e. ( Base ` G ) ) |
| 9 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 10 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 11 | 1 6 9 10 | qusadd | |- ( ( S e. ( NrmSGrp ` G ) /\ .0. e. ( Base ` G ) /\ .0. e. ( Base ` G ) ) -> ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ ( .0. ( +g ` G ) .0. ) ] ( G ~QG S ) ) |
| 12 | 8 8 11 | mpd3an23 | |- ( S e. ( NrmSGrp ` G ) -> ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ ( .0. ( +g ` G ) .0. ) ] ( G ~QG S ) ) |
| 13 | 6 9 2 | grplid | |- ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 14 | 5 8 13 | syl2anc | |- ( S e. ( NrmSGrp ` G ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 15 | 14 | eceq1d | |- ( S e. ( NrmSGrp ` G ) -> [ ( .0. ( +g ` G ) .0. ) ] ( G ~QG S ) = [ .0. ] ( G ~QG S ) ) |
| 16 | 12 15 | eqtrd | |- ( S e. ( NrmSGrp ` G ) -> ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ .0. ] ( G ~QG S ) ) |
| 17 | 1 | qusgrp | |- ( S e. ( NrmSGrp ` G ) -> H e. Grp ) |
| 18 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 19 | 1 6 18 | quseccl | |- ( ( S e. ( NrmSGrp ` G ) /\ .0. e. ( Base ` G ) ) -> [ .0. ] ( G ~QG S ) e. ( Base ` H ) ) |
| 20 | 8 19 | mpdan | |- ( S e. ( NrmSGrp ` G ) -> [ .0. ] ( G ~QG S ) e. ( Base ` H ) ) |
| 21 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 22 | 18 10 21 | grpid | |- ( ( H e. Grp /\ [ .0. ] ( G ~QG S ) e. ( Base ` H ) ) -> ( ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ .0. ] ( G ~QG S ) <-> ( 0g ` H ) = [ .0. ] ( G ~QG S ) ) ) |
| 23 | 17 20 22 | syl2anc | |- ( S e. ( NrmSGrp ` G ) -> ( ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ .0. ] ( G ~QG S ) <-> ( 0g ` H ) = [ .0. ] ( G ~QG S ) ) ) |
| 24 | 16 23 | mpbid | |- ( S e. ( NrmSGrp ` G ) -> ( 0g ` H ) = [ .0. ] ( G ~QG S ) ) |
| 25 | 24 | eqcomd | |- ( S e. ( NrmSGrp ` G ) -> [ .0. ] ( G ~QG S ) = ( 0g ` H ) ) |